End of training
Browse files
README.md
CHANGED
@@ -18,8 +18,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Accuracy: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -50,106 +50,106 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
103 |
-
|
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
| 0.
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
| 8.
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
127 |
-
|
|
128 |
-
|
|
129 |
-
|
|
130 |
-
|
|
131 |
-
|
|
132 |
-
|
|
133 |
-
|
|
134 |
-
|
|
135 |
-
|
|
136 |
-
|
|
137 |
-
|
|
138 |
-
|
|
139 |
-
|
|
140 |
-
|
|
141 |
-
|
|
142 |
-
|
|
143 |
-
|
|
144 |
-
| 1.
|
145 |
-
|
|
146 |
-
|
|
147 |
-
| 1.
|
148 |
-
| 1.
|
149 |
-
|
|
150 |
-
|
|
151 |
-
|
|
152 |
-
| 2.
|
153 |
|
154 |
|
155 |
### Framework versions
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6457
|
22 |
+
- Accuracy: 0.9
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 30.4061 | 2.0 | 2 | 273.0057 | 0.25 |
|
54 |
+
| 34.4778 | 4.0 | 4 | 105.9435 | 0.25 |
|
55 |
+
| 142.4009 | 6.0 | 6 | 59.4670 | 0.75 |
|
56 |
+
| 163.2062 | 8.0 | 8 | 7.1859 | 0.75 |
|
57 |
+
| 18.5088 | 10.0 | 10 | 213.3815 | 0.25 |
|
58 |
+
| 26.7609 | 12.0 | 12 | 139.8955 | 0.25 |
|
59 |
+
| 2.5101 | 14.0 | 14 | 40.3215 | 0.75 |
|
60 |
+
| 227.6862 | 16.0 | 16 | 65.1266 | 0.75 |
|
61 |
+
| 172.2084 | 18.0 | 18 | 18.4413 | 0.75 |
|
62 |
+
| 8.9021 | 20.0 | 20 | 135.4651 | 0.25 |
|
63 |
+
| 18.3707 | 22.0 | 22 | 106.7837 | 0.25 |
|
64 |
+
| 4.0304 | 24.0 | 24 | 25.2790 | 0.75 |
|
65 |
+
| 151.1751 | 26.0 | 26 | 40.5055 | 0.75 |
|
66 |
+
| 90.9441 | 28.0 | 28 | 5.5454 | 0.25 |
|
67 |
+
| 13.882 | 30.0 | 30 | 163.9310 | 0.25 |
|
68 |
+
| 21.8757 | 32.0 | 32 | 134.5106 | 0.25 |
|
69 |
+
| 7.3909 | 34.0 | 34 | 10.2510 | 0.75 |
|
70 |
+
| 89.2539 | 36.0 | 36 | 24.8699 | 0.75 |
|
71 |
+
| 41.6868 | 38.0 | 38 | 37.6232 | 0.25 |
|
72 |
+
| 7.2046 | 40.0 | 40 | 51.7227 | 0.25 |
|
73 |
+
| 0.785 | 42.0 | 42 | 12.0718 | 0.75 |
|
74 |
+
| 42.4561 | 44.0 | 44 | 3.2471 | 0.25 |
|
75 |
+
| 11.7306 | 46.0 | 46 | 96.5822 | 0.25 |
|
76 |
+
| 11.0079 | 48.0 | 48 | 39.1965 | 0.25 |
|
77 |
+
| 40.6509 | 50.0 | 50 | 20.8798 | 0.75 |
|
78 |
+
| 62.2298 | 52.0 | 52 | 3.0547 | 0.75 |
|
79 |
+
| 9.1953 | 54.0 | 54 | 93.0102 | 0.25 |
|
80 |
+
| 11.3341 | 56.0 | 56 | 49.3249 | 0.25 |
|
81 |
+
| 17.2652 | 58.0 | 58 | 12.8465 | 0.75 |
|
82 |
+
| 26.3375 | 60.0 | 60 | 17.7896 | 0.25 |
|
83 |
+
| 2.3781 | 62.0 | 62 | 1.1520 | 0.25 |
|
84 |
+
| 1.7964 | 64.0 | 64 | 27.0024 | 0.25 |
|
85 |
+
| 0.3859 | 66.0 | 66 | 10.6897 | 0.75 |
|
86 |
+
| 43.8049 | 68.0 | 68 | 4.2678 | 0.75 |
|
87 |
+
| 5.7809 | 70.0 | 70 | 57.0428 | 0.25 |
|
88 |
+
| 5.8372 | 72.0 | 72 | 3.1891 | 0.25 |
|
89 |
+
| 10.2265 | 74.0 | 74 | 14.5562 | 0.25 |
|
90 |
+
| 1.3022 | 76.0 | 76 | 0.9098 | 0.75 |
|
91 |
+
| 3.1084 | 78.0 | 78 | 11.1294 | 0.25 |
|
92 |
+
| 26.8542 | 80.0 | 80 | 8.2287 | 0.75 |
|
93 |
+
| 1.3357 | 82.0 | 82 | 50.3411 | 0.25 |
|
94 |
+
| 9.7622 | 84.0 | 84 | 56.3544 | 0.25 |
|
95 |
+
| 2.3044 | 86.0 | 86 | 11.6592 | 0.75 |
|
96 |
+
| 65.6323 | 88.0 | 88 | 17.1945 | 0.75 |
|
97 |
+
| 26.2342 | 90.0 | 90 | 32.7401 | 0.25 |
|
98 |
+
| 6.1743 | 92.0 | 92 | 50.0640 | 0.25 |
|
99 |
+
| 3.0945 | 94.0 | 94 | 8.6429 | 0.75 |
|
100 |
+
| 55.6696 | 96.0 | 96 | 11.5617 | 0.75 |
|
101 |
+
| 7.9304 | 98.0 | 98 | 48.5339 | 0.25 |
|
102 |
+
| 9.4683 | 100.0 | 100 | 68.6256 | 0.25 |
|
103 |
+
| 6.9711 | 102.0 | 102 | 1.1185 | 0.25 |
|
104 |
+
| 17.9561 | 104.0 | 104 | 2.0326 | 0.75 |
|
105 |
+
| 3.8259 | 106.0 | 106 | 28.7270 | 0.25 |
|
106 |
+
| 1.4343 | 108.0 | 108 | 7.2848 | 0.75 |
|
107 |
+
| 39.3397 | 110.0 | 110 | 5.9552 | 0.75 |
|
108 |
+
| 2.2064 | 112.0 | 112 | 23.7964 | 0.25 |
|
109 |
+
| 1.8151 | 114.0 | 114 | 5.3844 | 0.75 |
|
110 |
+
| 22.2713 | 116.0 | 116 | 2.2849 | 0.75 |
|
111 |
+
| 3.3845 | 118.0 | 118 | 35.3856 | 0.25 |
|
112 |
+
| 3.4312 | 120.0 | 120 | 0.6936 | 0.25 |
|
113 |
+
| 6.1348 | 122.0 | 122 | 9.6259 | 0.25 |
|
114 |
+
| 0.4537 | 124.0 | 124 | 5.0600 | 0.75 |
|
115 |
+
| 19.9785 | 126.0 | 126 | 1.4862 | 0.25 |
|
116 |
+
| 3.5936 | 128.0 | 128 | 44.3517 | 0.25 |
|
117 |
+
| 5.9722 | 130.0 | 130 | 18.2233 | 0.25 |
|
118 |
+
| 20.099 | 132.0 | 132 | 9.5809 | 0.75 |
|
119 |
+
| 28.7009 | 134.0 | 134 | 2.0241 | 0.75 |
|
120 |
+
| 3.8411 | 136.0 | 136 | 39.1799 | 0.25 |
|
121 |
+
| 5.2586 | 138.0 | 138 | 21.3355 | 0.25 |
|
122 |
+
| 8.9217 | 140.0 | 140 | 5.3869 | 0.75 |
|
123 |
+
| 14.4647 | 142.0 | 142 | 6.8343 | 0.25 |
|
124 |
+
| 0.6143 | 144.0 | 144 | 2.6079 | 0.25 |
|
125 |
+
| 0.3063 | 146.0 | 146 | 0.6002 | 0.75 |
|
126 |
+
| 0.0396 | 148.0 | 148 | 20.4224 | 0.25 |
|
127 |
+
| 3.2237 | 150.0 | 150 | 14.8742 | 0.25 |
|
128 |
+
| 6.1285 | 152.0 | 152 | 2.8047 | 0.75 |
|
129 |
+
| 6.9479 | 154.0 | 154 | 15.0406 | 0.25 |
|
130 |
+
| 2.3471 | 156.0 | 156 | 13.5490 | 0.25 |
|
131 |
+
| 3.6263 | 158.0 | 158 | 1.4868 | 0.75 |
|
132 |
+
| 0.5022 | 160.0 | 160 | 17.8967 | 0.25 |
|
133 |
+
| 4.1843 | 162.0 | 162 | 18.0276 | 0.25 |
|
134 |
+
| 0.7145 | 164.0 | 164 | 4.3462 | 0.75 |
|
135 |
+
| 23.1296 | 166.0 | 166 | 6.6729 | 0.75 |
|
136 |
+
| 13.1642 | 168.0 | 168 | 3.9175 | 0.25 |
|
137 |
+
| 3.433 | 170.0 | 170 | 33.4045 | 0.25 |
|
138 |
+
| 5.0543 | 172.0 | 172 | 31.1038 | 0.25 |
|
139 |
+
| 2.695 | 174.0 | 174 | 6.2978 | 0.25 |
|
140 |
+
| 11.396 | 176.0 | 176 | 5.3975 | 0.75 |
|
141 |
+
| 20.3118 | 178.0 | 178 | 4.1132 | 0.75 |
|
142 |
+
| 4.1789 | 180.0 | 180 | 9.2370 | 0.25 |
|
143 |
+
| 2.806 | 182.0 | 182 | 16.7589 | 0.25 |
|
144 |
+
| 1.8424 | 184.0 | 184 | 7.5781 | 0.25 |
|
145 |
+
| 3.0288 | 186.0 | 186 | 1.7304 | 0.75 |
|
146 |
+
| 5.4305 | 188.0 | 188 | 0.8391 | 0.75 |
|
147 |
+
| 1.9329 | 190.0 | 190 | 9.1368 | 0.25 |
|
148 |
+
| 1.8576 | 192.0 | 192 | 12.6123 | 0.25 |
|
149 |
+
| 2.0932 | 194.0 | 194 | 8.6446 | 0.25 |
|
150 |
+
| 0.5404 | 196.0 | 196 | 1.8219 | 0.25 |
|
151 |
+
| 2.7355 | 198.0 | 198 | 0.5940 | 0.75 |
|
152 |
+
| 2.1872 | 200.0 | 200 | 0.7259 | 0.25 |
|
153 |
|
154 |
|
155 |
### Framework versions
|