End of training
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/roberta-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: test_roberta-base-uncased_fine
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# test_roberta-base-uncased_fine
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7702
|
22 |
+
- Accuracy: 0.5
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.4
|
42 |
+
- train_batch_size: 64
|
43 |
+
- eval_batch_size: 64
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 200
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 10.6938 | 2.0 | 2 | 252.3604 | 0.25 |
|
54 |
+
| 298.9333 | 4.0 | 4 | 442.8570 | 0.25 |
|
55 |
+
| 211.2317 | 6.0 | 6 | 111.0638 | 0.25 |
|
56 |
+
| 106.4107 | 8.0 | 8 | 84.1177 | 0.75 |
|
57 |
+
| 158.3927 | 10.0 | 10 | 51.9647 | 0.75 |
|
58 |
+
| 6.2279 | 12.0 | 12 | 173.9537 | 0.25 |
|
59 |
+
| 182.2623 | 14.0 | 14 | 273.0900 | 0.25 |
|
60 |
+
| 144.4092 | 16.0 | 16 | 118.2153 | 0.25 |
|
61 |
+
| 16.2253 | 18.0 | 18 | 29.9255 | 0.75 |
|
62 |
+
| 61.4584 | 20.0 | 20 | 15.3424 | 0.75 |
|
63 |
+
| 25.5289 | 22.0 | 22 | 73.0185 | 0.25 |
|
64 |
+
| 33.1599 | 24.0 | 24 | 5.7046 | 0.75 |
|
65 |
+
| 16.6906 | 26.0 | 26 | 6.8680 | 0.25 |
|
66 |
+
| 3.3119 | 28.0 | 28 | 25.7839 | 0.25 |
|
67 |
+
| 5.7235 | 30.0 | 30 | 15.8690 | 0.75 |
|
68 |
+
| 34.8772 | 32.0 | 32 | 5.4515 | 0.75 |
|
69 |
+
| 37.1887 | 34.0 | 34 | 77.3684 | 0.25 |
|
70 |
+
| 37.5714 | 36.0 | 36 | 1.4211 | 0.75 |
|
71 |
+
| 14.3135 | 38.0 | 38 | 7.8595 | 0.25 |
|
72 |
+
| 5.5931 | 40.0 | 40 | 16.6094 | 0.25 |
|
73 |
+
| 1.8101 | 42.0 | 42 | 18.0400 | 0.25 |
|
74 |
+
| 4.0269 | 44.0 | 44 | 14.3646 | 0.25 |
|
75 |
+
| 5.9638 | 46.0 | 46 | 11.1460 | 0.25 |
|
76 |
+
| 8.1137 | 48.0 | 48 | 8.4826 | 0.25 |
|
77 |
+
| 8.3957 | 50.0 | 50 | 6.5438 | 0.25 |
|
78 |
+
| 8.5907 | 52.0 | 52 | 5.2709 | 0.25 |
|
79 |
+
| 4.1322 | 54.0 | 54 | 16.3942 | 0.25 |
|
80 |
+
| 4.1029 | 56.0 | 56 | 13.8090 | 0.75 |
|
81 |
+
| 28.9367 | 58.0 | 58 | 5.2299 | 0.75 |
|
82 |
+
| 28.4754 | 60.0 | 60 | 62.0075 | 0.25 |
|
83 |
+
| 30.8988 | 62.0 | 62 | 0.7625 | 0.75 |
|
84 |
+
| 8.1166 | 64.0 | 64 | 12.6710 | 0.25 |
|
85 |
+
| 3.2467 | 66.0 | 66 | 2.3880 | 0.75 |
|
86 |
+
| 10.7889 | 68.0 | 68 | 5.7275 | 0.25 |
|
87 |
+
| 22.3353 | 70.0 | 70 | 12.9041 | 0.75 |
|
88 |
+
| 8.1383 | 72.0 | 72 | 41.1468 | 0.25 |
|
89 |
+
| 36.7992 | 74.0 | 74 | 42.5415 | 0.25 |
|
90 |
+
| 2.0152 | 76.0 | 76 | 20.8100 | 0.75 |
|
91 |
+
| 60.7814 | 78.0 | 78 | 27.4327 | 0.75 |
|
92 |
+
| 34.0779 | 80.0 | 80 | 9.5079 | 0.25 |
|
93 |
+
| 21.0197 | 82.0 | 82 | 24.1783 | 0.25 |
|
94 |
+
| 7.6894 | 84.0 | 84 | 3.8363 | 0.75 |
|
95 |
+
| 7.4756 | 86.0 | 86 | 8.7418 | 0.25 |
|
96 |
+
| 14.3838 | 88.0 | 88 | 7.2120 | 0.75 |
|
97 |
+
| 3.0887 | 90.0 | 90 | 1.2209 | 0.25 |
|
98 |
+
| 1.8247 | 92.0 | 92 | 6.9209 | 0.75 |
|
99 |
+
| 12.0203 | 94.0 | 94 | 12.7842 | 0.25 |
|
100 |
+
| 8.0623 | 96.0 | 96 | 3.4052 | 0.75 |
|
101 |
+
| 2.7705 | 98.0 | 98 | 20.0414 | 0.25 |
|
102 |
+
| 15.1917 | 100.0 | 100 | 1.2432 | 0.75 |
|
103 |
+
| 1.2199 | 102.0 | 102 | 1.3510 | 0.25 |
|
104 |
+
| 10.4742 | 104.0 | 104 | 1.7442 | 0.75 |
|
105 |
+
| 17.1792 | 106.0 | 106 | 29.1314 | 0.25 |
|
106 |
+
| 6.9967 | 108.0 | 108 | 8.8842 | 0.75 |
|
107 |
+
| 27.7392 | 110.0 | 110 | 8.9014 | 0.75 |
|
108 |
+
| 1.9595 | 112.0 | 112 | 10.4839 | 0.25 |
|
109 |
+
| 2.4346 | 114.0 | 114 | 2.5657 | 0.25 |
|
110 |
+
| 9.1093 | 116.0 | 116 | 0.9068 | 0.75 |
|
111 |
+
| 15.7093 | 118.0 | 118 | 25.8976 | 0.25 |
|
112 |
+
| 5.3074 | 120.0 | 120 | 7.7724 | 0.75 |
|
113 |
+
| 21.9532 | 122.0 | 122 | 8.1528 | 0.75 |
|
114 |
+
| 0.9267 | 124.0 | 124 | 26.0336 | 0.25 |
|
115 |
+
| 21.7107 | 126.0 | 126 | 14.6756 | 0.25 |
|
116 |
+
| 9.9152 | 128.0 | 128 | 8.1630 | 0.75 |
|
117 |
+
| 9.7847 | 130.0 | 130 | 7.8175 | 0.25 |
|
118 |
+
| 6.7746 | 132.0 | 132 | 1.0481 | 0.25 |
|
119 |
+
| 14.4615 | 134.0 | 134 | 8.8793 | 0.75 |
|
120 |
+
| 11.8844 | 136.0 | 136 | 9.5880 | 0.25 |
|
121 |
+
| 12.1117 | 138.0 | 138 | 8.3064 | 0.25 |
|
122 |
+
| 8.4027 | 140.0 | 140 | 6.0652 | 0.75 |
|
123 |
+
| 5.8957 | 142.0 | 142 | 13.8286 | 0.25 |
|
124 |
+
| 10.5928 | 144.0 | 144 | 11.3976 | 0.25 |
|
125 |
+
| 5.7989 | 146.0 | 146 | 4.3992 | 0.75 |
|
126 |
+
| 3.2276 | 148.0 | 148 | 14.5699 | 0.25 |
|
127 |
+
| 13.8288 | 150.0 | 150 | 12.2211 | 0.25 |
|
128 |
+
| 2.9975 | 152.0 | 152 | 3.4190 | 0.75 |
|
129 |
+
| 2.5391 | 154.0 | 154 | 13.8731 | 0.25 |
|
130 |
+
| 11.4397 | 156.0 | 156 | 11.4427 | 0.25 |
|
131 |
+
| 4.3493 | 158.0 | 158 | 2.8519 | 0.75 |
|
132 |
+
| 1.8169 | 160.0 | 160 | 4.8652 | 0.25 |
|
133 |
+
| 3.0403 | 162.0 | 162 | 3.1370 | 0.75 |
|
134 |
+
| 5.9224 | 164.0 | 164 | 1.0573 | 0.75 |
|
135 |
+
| 7.1067 | 166.0 | 166 | 14.0748 | 0.25 |
|
136 |
+
| 6.5255 | 168.0 | 168 | 0.7829 | 0.75 |
|
137 |
+
| 5.3116 | 170.0 | 170 | 2.0900 | 0.75 |
|
138 |
+
| 1.927 | 172.0 | 172 | 3.1757 | 0.25 |
|
139 |
+
| 1.8274 | 174.0 | 174 | 0.5881 | 0.75 |
|
140 |
+
| 5.5108 | 176.0 | 176 | 6.2222 | 0.25 |
|
141 |
+
| 1.3478 | 178.0 | 178 | 1.1449 | 0.75 |
|
142 |
+
| 2.7849 | 180.0 | 180 | 3.2430 | 0.25 |
|
143 |
+
| 1.8472 | 182.0 | 182 | 0.5665 | 0.75 |
|
144 |
+
| 1.8895 | 184.0 | 184 | 1.9489 | 0.25 |
|
145 |
+
| 2.4857 | 186.0 | 186 | 0.6363 | 0.75 |
|
146 |
+
| 2.2369 | 188.0 | 188 | 1.2758 | 0.25 |
|
147 |
+
| 1.5309 | 190.0 | 190 | 0.5841 | 0.75 |
|
148 |
+
| 1.7197 | 192.0 | 192 | 0.5974 | 0.75 |
|
149 |
+
| 1.928 | 194.0 | 194 | 0.7480 | 0.25 |
|
150 |
+
| 2.7589 | 196.0 | 196 | 2.8053 | 0.25 |
|
151 |
+
| 1.4242 | 198.0 | 198 | 1.3693 | 0.25 |
|
152 |
+
| 2.1382 | 200.0 | 200 | 0.5714 | 0.75 |
|
153 |
+
|
154 |
+
|
155 |
+
### Framework versions
|
156 |
+
|
157 |
+
- Transformers 4.44.2
|
158 |
+
- Pytorch 2.4.1+cu121
|
159 |
+
- Datasets 3.0.1
|
160 |
+
- Tokenizers 0.19.1
|