Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,160 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- LongSafari/hyenadna-large-1m-seqlen-hf
|
| 7 |
+
- zhihan1996/DNABERT-2-117M
|
| 8 |
+
- InstaDeepAI/nucleotide-transformer-v2-50m-multi-species
|
| 9 |
+
pipeline_tag: text-classification
|
| 10 |
+
tags:
|
| 11 |
+
- metagenomics
|
| 12 |
+
- taxonomic-classification
|
| 13 |
+
- antimicrobial-resistance
|
| 14 |
+
- pathogen-detection
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Genomic Language Models for Metagenomic Sequence Analysis
|
| 18 |
+
|
| 19 |
+
We provide genomic language models fine-tuned for the following tasks:
|
| 20 |
+
|
| 21 |
+
- **Taxonomic hierarchical classification**
|
| 22 |
+
- **Anti-microbial resistance gene identification**
|
| 23 |
+
- **Pathogenicity detection**
|
| 24 |
+
|
| 25 |
+
See [code](github.com/jhuapl-bio/microbert) for details on fine-tuning, evaluation, and implementation.
|
| 26 |
+
|
| 27 |
+
These are the official models implemented in [Evaluating the Effectiveness of Parameter-Efficient Fine-Tuning in Genomic Classification Tasks](https://www.biorxiv.org/content/10.1101/2025.08.21.671544v1) and []()
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
## Pretrained Foundation Models
|
| 32 |
+
|
| 33 |
+
Our models are built upon several pretrained genomic foundation models:
|
| 34 |
+
|
| 35 |
+
### Nucleotide Transformer (NT)
|
| 36 |
+
- [InstaDeepAI/nucleotide-transformer-v2-50m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-50m-multi-species)
|
| 37 |
+
- [InstaDeepAI/nucleotide-transformer-v2-100m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-100m-multi-species)
|
| 38 |
+
- [InstaDeepAI/nucleotide-transformer-v2-250m-multi-species](https://huggingface.co/InstaDeepAI/nucleotide-transformer-v2-250m-multi-species)
|
| 39 |
+
|
| 40 |
+
### DNABERT
|
| 41 |
+
- [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M)
|
| 42 |
+
- [zhihan1996/DNABERT-S](https://huggingface.co/zhihan1996/DNABERT-S)
|
| 43 |
+
|
| 44 |
+
### HyenaDNA
|
| 45 |
+
- [LongSafari/hyenadna-large-1m-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen-hf)
|
| 46 |
+
- [LongSafari/hyenadna-medium-450k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen-hf)
|
| 47 |
+
- [LongSafari/hyenadna-medium-160k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen-hf)
|
| 48 |
+
- [LongSafari/hyenadna-small-32k-seqlen-hf](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen-hf)
|
| 49 |
+
|
| 50 |
+
We sincerely thank the teams behind NT, DNABERT, and HyenaDNA for making their tokenizers and pre-trained models available for use :)
|
| 51 |
+
|
| 52 |
+
---
|
| 53 |
+
|
| 54 |
+
## Available Fine-Tuned Models
|
| 55 |
+
|
| 56 |
+
We provide the following available models for use.
|
| 57 |
+
|
| 58 |
+
- `taxonomy_nucleotide-transformer-v2-50m-multi-species`
|
| 59 |
+
- `taxonomy_DNABERT-2-117M`
|
| 60 |
+
- `taxonomy_hyenadna-large-1m-seqlen-hf`
|
| 61 |
+
- `amr_nucleotide-transformer-v2-50m-multi-species`
|
| 62 |
+
- `amr_DNABERT-2-117M`
|
| 63 |
+
- `amr_hyenadna-large-1m-seqlen-hf`
|
| 64 |
+
- `pathogenicity_nucleotide-transformer-v2-50m-multi-species`
|
| 65 |
+
- `pathogenicity_DNABERT-2-117M`
|
| 66 |
+
- `pathogenicity_hyenadna-large-1m-seqlen-hf`
|
| 67 |
+
|
| 68 |
+
To use these models, download the directories available here.
|
| 69 |
+
You must also follow the installation instructions available at [code](github.com/jhuapl-bio/microbert).
|
| 70 |
+
There are two available modes of operation: setup from source code and setup from Docker.
|
| 71 |
+
Given that you have followed the setup instructions from source code and have downloaded the model directories here, here is sample code to run inference:
|
| 72 |
+
|
| 73 |
+
```
|
| 74 |
+
import json
|
| 75 |
+
from pathlib import Path
|
| 76 |
+
import torch
|
| 77 |
+
import torch.nn.functional as F
|
| 78 |
+
from transformers import (
|
| 79 |
+
AutoTokenizer,
|
| 80 |
+
)
|
| 81 |
+
from safetensors.torch import load_file
|
| 82 |
+
|
| 83 |
+
from analysis.experiment.utils.data_processor import DataProcessor
|
| 84 |
+
from analysis.experiment.models.hierarchical_model import (
|
| 85 |
+
HierarchicalClassificationModel,
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# Replace with base directory containing all data processor, base model tokenizers, and trained model weights files
|
| 89 |
+
model_dir = Path('data/LongSafari__hyenadna-large-1m-seqlen-hf')
|
| 90 |
+
data_processor_dir = model_dir / "data_processor" # replace with directory containing your data processor
|
| 91 |
+
metadata_path = data_processor_dir / "metadata.json"
|
| 92 |
+
base_model_dir = model_dir / "base_model" # replace with directory containing your base model files
|
| 93 |
+
trained_model_dir = model_dir / "model" # replace with directory containing your trained model files
|
| 94 |
+
trained_model_path = trained_model_dir / "model.safetensors"
|
| 95 |
+
|
| 96 |
+
# Load metadata
|
| 97 |
+
with open(metadata_path, "r") as f:
|
| 98 |
+
metadata = json.load(f)
|
| 99 |
+
|
| 100 |
+
sequence_column = metadata["sequence_column"]
|
| 101 |
+
labels = metadata["labels"]
|
| 102 |
+
data_processor_filename = 'data_processor.pkl'
|
| 103 |
+
|
| 104 |
+
# load data processor
|
| 105 |
+
data_processor = DataProcessor(
|
| 106 |
+
sequence_column=sequence_column,
|
| 107 |
+
labels=labels,
|
| 108 |
+
save_file=data_processor_filename,
|
| 109 |
+
)
|
| 110 |
+
data_processor.load_processor(data_processor_dir)
|
| 111 |
+
|
| 112 |
+
# Get metadata-driven values
|
| 113 |
+
num_labels = data_processor.num_labels
|
| 114 |
+
class_weights = data_processor.class_weights
|
| 115 |
+
|
| 116 |
+
# Load tokenizer from Hugging Face Hub or local path
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 118 |
+
pretrained_model_name_or_path=base_model_dir.as_posix(),
|
| 119 |
+
trust_remote_code=True,
|
| 120 |
+
local_files_only=True,
|
| 121 |
+
)
|
| 122 |
+
# Load fine-tuned model weights
|
| 123 |
+
model = HierarchicalClassificationModel(base_model_dir.as_posix(), num_labels, class_weights)
|
| 124 |
+
state_dict = load_file(trained_model_path)
|
| 125 |
+
model.load_state_dict(state_dict, strict=False)
|
| 126 |
+
input = "ATCG"
|
| 127 |
+
|
| 128 |
+
# Run inference
|
| 129 |
+
tokenized_input = tokenizer(
|
| 130 |
+
input,
|
| 131 |
+
return_tensors="pt", # Return results as PyTorch tensors
|
| 132 |
+
)
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
outputs = model(**tokenized_input)
|
| 135 |
+
|
| 136 |
+
for idx, col in enumerate(labels):
|
| 137 |
+
logits = outputs['logits'][idx] # [num_classes]
|
| 138 |
+
probs = F.softmax(logits, dim=-1).cpu()
|
| 139 |
+
topk = torch.topk(probs, k=1, dim=-1)
|
| 140 |
+
topk_index = topk.indices.numpy().ravel()
|
| 141 |
+
topk_prob = topk.values
|
| 142 |
+
topk_label = data_processor.encoders[col].inverse_transform(topk_index)
|
| 143 |
+
```
|
| 144 |
+
---
|
| 145 |
+
|
| 146 |
+
## Authors & Contact
|
| 147 |
+
|
| 148 |
+
- Daniel Berman — [email protected]
|
| 149 |
+
- Daniel Jimenez — [email protected]
|
| 150 |
+
- Stanley Ta — [email protected]
|
| 151 |
+
- Brian Merritt — [email protected]
|
| 152 |
+
- Jeremy Ratcliff — [email protected]
|
| 153 |
+
- Vijay Narayan — [email protected]
|
| 154 |
+
- Molly Gallaghar - [email protected]
|
| 155 |
+
|
| 156 |
+
---
|
| 157 |
+
|
| 158 |
+
## Acknowledgement
|
| 159 |
+
|
| 160 |
+
This work was supported by funding from the **U.S. Centers for Disease Control and Prevention** through the **Office of Readiness and Response** under **Contract # 75D30124C20202**.
|