--- license: mit base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract tags: - generated_from_trainer metrics: - accuracy model-index: - name: pubmedbert-abstract results: [] --- # pubmedbert-abstract This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4618 - Accuracy: 0.9501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | No log | 1.0 | 791 | 0.2340 | 0.9386 | | 0.1776 | 2.0 | 1582 | 0.2716 | 0.9419 | | 0.0855 | 3.0 | 2373 | 0.2730 | 0.9431 | | 0.0627 | 4.0 | 3164 | 0.3323 | 0.9382 | | 0.0627 | 5.0 | 3955 | 0.3308 | 0.9451 | | 0.0463 | 6.0 | 4746 | 0.3986 | 0.9412 | | 0.0308 | 7.0 | 5537 | 0.4211 | 0.9419 | | 0.0312 | 8.0 | 6328 | 0.3616 | 0.9437 | | 0.0221 | 9.0 | 7119 | 0.4310 | 0.9396 | | 0.0221 | 10.0 | 7910 | 0.4222 | 0.9438 | | 0.0181 | 11.0 | 8701 | 0.4185 | 0.9445 | | 0.0141 | 12.0 | 9492 | 0.4678 | 0.9456 | | 0.0133 | 13.0 | 10283 | 0.4027 | 0.9503 | | 0.0082 | 14.0 | 11074 | 0.4504 | 0.9473 | | 0.0082 | 15.0 | 11865 | 0.4760 | 0.9505 | | 0.0052 | 16.0 | 12656 | 0.4573 | 0.9449 | | 0.0042 | 17.0 | 13447 | 0.4356 | 0.9522 | | 0.0037 | 18.0 | 14238 | 0.4577 | 0.9487 | | 0.0024 | 19.0 | 15029 | 0.4642 | 0.9493 | | 0.0024 | 20.0 | 15820 | 0.4618 | 0.9501 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2