--- license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: superb_si_42 results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: si split: validation args: si metrics: - name: Accuracy type: accuracy value: 0.15773464658169178 --- # superb_si_42 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 3.9981 - Accuracy: 0.1577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 6.2927 | 1.0 | 4324 | 6.5321 | 0.0049 | | 5.6909 | 2.0 | 8648 | 6.0103 | 0.0088 | | 5.3829 | 3.0 | 12972 | 5.5309 | 0.0235 | | 4.9995 | 4.0 | 17296 | 5.1894 | 0.0379 | | 4.7591 | 5.0 | 21620 | 4.8644 | 0.0620 | | 4.5243 | 6.0 | 25944 | 4.6042 | 0.0859 | | 4.2486 | 7.0 | 30268 | 4.3497 | 0.1173 | | 4.0813 | 8.0 | 34592 | 4.1215 | 0.1405 | | 3.9317 | 9.0 | 38916 | 4.0431 | 0.1508 | | 3.8568 | 10.0 | 43240 | 3.9981 | 0.1577 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1