--- license: apache-2.0 base_model: openai/whisper-base tags: - audio-classification - generated_from_trainer datasets: - superb metrics: - accuracy model-index: - name: superb_si_42 results: - task: name: Audio Classification type: audio-classification dataset: name: superb type: superb config: si split: validation args: si metrics: - name: Accuracy type: accuracy value: 0.6013904982618772 --- # superb_si_42 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 1.7025 - Accuracy: 0.6014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 5.4406 | 1.0 | 4324 | 5.5144 | 0.0424 | | 3.6304 | 2.0 | 8648 | 3.8862 | 0.1867 | | 2.6868 | 3.0 | 12972 | 2.9909 | 0.3292 | | 1.9548 | 4.0 | 17296 | 2.6032 | 0.3889 | | 1.5749 | 5.0 | 21620 | 2.2077 | 0.4778 | | 1.3105 | 6.0 | 25944 | 2.0726 | 0.5194 | | 1.1002 | 7.0 | 30268 | 1.9175 | 0.5511 | | 0.9522 | 8.0 | 34592 | 1.7847 | 0.5899 | | 0.8263 | 9.0 | 38916 | 1.7225 | 0.5936 | | 0.7333 | 10.0 | 43240 | 1.7025 | 0.6014 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1