File size: 9,933 Bytes
fa2224f 0df23dc fa2224f 352f47d fa2224f 14fbb0c fa2224f af99331 a6c0d30 27de169 14fbb0c a6c0d30 14fbb0c af99331 14fbb0c af99331 14fbb0c a6c0d30 14fbb0c a6c0d30 14fbb0c a6c0d30 14fbb0c a6c0d30 c79aa4b 14fbb0c a6c0d30 27de169 14fbb0c af99331 14fbb0c af99331 14fbb0c c3ad4e9 14fbb0c c3ad4e9 14fbb0c c3ad4e9 14fbb0c c3ad4e9 14fbb0c c3ad4e9 14fbb0c c3ad4e9 14fbb0c af99331 c3ad4e9 af99331 5c64de7 af99331 14fbb0c a6c0d30 2a41ea3 a6c0d30 c3ad4e9 a6c0d30 14fbb0c a6c0d30 14fbb0c a6c0d30 c3ad4e9 a6c0d30 af99331 a6c0d30 af99331 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
---
pipeline_tag: text-generation
language:
- multilingual
inference: false
license: cc-by-nc-4.0
library_name: transformers
---
<br><br>
<p align="center">
<img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
</p>
<p align="center">
<b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-html-to-markdown-and-json) | [API](https://jina.ai/reader) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing) | [AWS](https://aws.amazon.com/marketplace/pp/prodview-jwfct4j4rvxk2?sr=0-21&ref_=beagle&applicationId=AWSMPContessa) | [Azure](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/jinaai.reader-lm-v2-vm)| [Arxiv (soon!)]
# ReaderLM-v2
`ReaderLM-v2` is a 1.5B parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling. Supporting multiple languages (29 in total), `ReaderLM-v2` is specialized for tasks involving HTML parsing, transformation, and text extraction.
## What's New in `ReaderLM-v2`
`ReaderLM-v2` represents a significant leap forward from its predecessor, with several key improvements:
- **Better Markdown Generation**: Thanks to its new training paradigm and higher-quality training data, the model excels at generating complex elements like code fences, nested lists, tables, and LaTeX equations.
- **JSON Output**: Introduces direct HTML-to-JSON generation using predefined schemas, eliminating the need for intermediate markdown conversion.
- **Longer Context Handling**: Handles up to 512K tokens combined input and output length, with improved performance on long-form content.
- **Multilingual Support**: Comprehensive support across 29 languages for broader applications.
- **Enhanced Stability**: Greatly alleviates degeneration issues after generating long sequences through contrastive loss during training.
## Model Overview
- **Model Type**: Autoregressive, decoder-only transformer
- **Parameter Count**: 1.54B
- **Context Window**: Up to 512K tokens (combined input and output)
- **Hidden Size**: 1536
- **Number of Layers**: 28
- **Query Heads**: 12
- **KV Heads**: 2
- **Head Size**: 128
- **Intermediate Size**: 8960
- **Supported Languages**: English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more (29 total)
---
# Usage
Below, you will find instructions and examples for using `ReaderLM-v2` locally using the Hugging Face Transformers library.
For a more hands-on experience in a hosted environment, see the [Google Colab Notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing).
## Via Reader API
`ReaderLM-v2` is now fully integrated with [Reader API](https://jina.ai/reader/). To use it, simply specify `x-engine: readerlm-v2` in your request headers and enable response streaming with `-H 'Accept: text/event-stream'`:
```bash
curl https://r.jina.ai/https://news.ycombinator.com/ -H 'x-engine: readerlm-v2' -H 'Accept: text/event-stream'
```
You can try it without an API key at a lower rate limit. For higher rate limits, you can purchase an API key. Please note that ReaderLM-v2 requests consume 3x the normal token count from your API key allocation. This is currently an experimental feature, and we're working with the GCP team to improve GPU efficiency.
## On Google Colab
You can try `ReaderLM-v2` via our [Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing), which demonstrates HTML-to-markdown conversion, JSON extraction, and instruction-following using the HackerNews frontpage as an example. The notebook is optimized for Colab's free T4 GPU tier and requires `vllm` and `triton` for acceleration and running.
Note that the free T4 GPU has limitations—it doesn't support bfloat16 or flash attention 2, leading to higher memory usage and slower processing of longer inputs. Nevertheless, ReaderLM-v2 successfully processes large documents under these constraints, achieving processing speeds of 67 tokens/s input and 36 tokens/s output. For production use, we recommend an RTX 3090/4090 for optimal performance.
## Local Usage
To use `ReaderLM-v2` locally:
1. Install the necessary dependencies:
```bash
pip install transformers
```
2. Load and run the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # or "cpu"
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device)
```
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input:
```python
import re
# Patterns
SCRIPT_PATTERN = r"<[ ]*script.*?\/[ ]*script[ ]*>"
STYLE_PATTERN = r"<[ ]*style.*?\/[ ]*style[ ]*>"
META_PATTERN = r"<[ ]*meta.*?>"
COMMENT_PATTERN = r"<[ ]*!--.*?--[ ]*>"
LINK_PATTERN = r"<[ ]*link.*?>"
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
SVG_PATTERN = r"(<svg[^>]*>)(.*?)(<\/svg>)"
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
return re.sub(
SVG_PATTERN,
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
html,
flags=re.DOTALL,
)
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
html = re.sub(
SCRIPT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
STYLE_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
META_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
COMMENT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
html = re.sub(
LINK_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
)
if clean_svg:
html = replace_svg(html)
if clean_base64:
html = replace_base64_images(html)
return html
```
4. Create a prompt for the model:
```python
def create_prompt(
text: str, tokenizer=None, instruction: str = None, schema: str = None
) -> str:
"""
Create a prompt for the model with optional instruction and JSON schema.
"""
if not instruction:
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
if schema:
instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format."
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json\n{schema}\n```"
else:
prompt = f"{instruction}\n```html\n{text}\n```"
messages = [
{
"role": "user",
"content": prompt,
}
]
return tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
```
### HTML to Markdown Example
```python
html = "<html><body><h1>Hello, world!</h1></body></html>"
html = clean_html(html)
input_prompt = create_prompt(html, tokenizer=tokenizer)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
)
print(tokenizer.decode(outputs[0]))
```
### HTML to JSON Example
```python
schema = """
{
"type": "object",
"properties": {
"title": {
"type": "string"
},
"author": {
"type": "string"
},
"date": {
"type": "string"
},
"content": {
"type": "string"
}
},
"required": ["title", "author", "date", "content"]
}
"""
html = clean_html(html)
input_prompt = create_prompt(html, schema=schema)
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
outputs = model.generate(
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
)
print(tokenizer.decode(outputs[0]))
```
## Model Performance
ReaderLM-v2 has been extensively evaluated on various tasks:
### Quantitative Evaluation
For HTML-to-Markdown tasks, the model outperforms much larger models like Qwen2.5-32B-Instruct and Gemini2-flash-expr, achieving:
- ROUGE-L: 0.84
- Levenshtein Distance: 0.22
- Jaro-Winkler Similarity: 0.82
For HTML-to-JSON tasks, it shows competitive performance with:
- F1 Score: 0.81
- Precision: 0.82
- Recall: 0.81
- Pass-Rate: 0.98
### Qualitative Evaluation
The model excels in three key dimensions:
- Content Integrity: 39/50
- Structural Accuracy: 35/50
- Format Compliance: 36/50
These scores demonstrate strong performance in preserving semantic information, maintaining structural accuracy, and adhering to markdown syntax standards.
## Training Details
ReaderLM-v2 is built on Qwen2.5-1.5B-Instruction and trained using a sophisticated pipeline:
1. Data Preparation: Created html-markdown-1m dataset with 1 million HTML documents
2. Synthetic Data Generation: Three-step pipeline using Qwen2.5-32B-Instruction
- Drafting: Initial markdown and JSON generation
- Refinement: Content cleanup and structure alignment
- Critique: Quality evaluation and filtering
3. Training Process:
- Long-context pretraining
- Supervised fine-tuning
- Direct preference optimization
- Self-play reinforcement tuning |