alaeddine-13 commited on
Commit
dd64d18
1 Parent(s): e1b325c

add sliding window parameter to all layers

Browse files
Files changed (1) hide show
  1. modeling_bert.py +4 -0
modeling_bert.py CHANGED
@@ -1510,6 +1510,7 @@ class JinaBertForPreTraining(JinaBertPreTrainedModel):
1510
  output_attentions: Optional[bool] = None,
1511
  output_hidden_states: Optional[bool] = None,
1512
  return_dict: Optional[bool] = None,
 
1513
  ) -> Union[Tuple[torch.Tensor], JinaBertForPreTrainingOutput]:
1514
  r"""
1515
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -1541,6 +1542,7 @@ class JinaBertForPreTraining(JinaBertPreTrainedModel):
1541
  output_attentions=output_attentions,
1542
  output_hidden_states=output_hidden_states,
1543
  return_dict=return_dict,
 
1544
  )
1545
 
1546
  sequence_output, pooled_output = outputs[:2]
@@ -1783,6 +1785,7 @@ class JinaBertForMaskedLM(JinaBertPreTrainedModel):
1783
  output_attentions: Optional[bool] = None,
1784
  output_hidden_states: Optional[bool] = None,
1785
  return_dict: Optional[bool] = None,
 
1786
  ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1787
  r"""
1788
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -1807,6 +1810,7 @@ class JinaBertForMaskedLM(JinaBertPreTrainedModel):
1807
  output_attentions=output_attentions,
1808
  output_hidden_states=output_hidden_states,
1809
  return_dict=return_dict,
 
1810
  )
1811
 
1812
  sequence_output = outputs[0]
 
1510
  output_attentions: Optional[bool] = None,
1511
  output_hidden_states: Optional[bool] = None,
1512
  return_dict: Optional[bool] = None,
1513
+ sliding_window: Optional[int] = None,
1514
  ) -> Union[Tuple[torch.Tensor], JinaBertForPreTrainingOutput]:
1515
  r"""
1516
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
 
1542
  output_attentions=output_attentions,
1543
  output_hidden_states=output_hidden_states,
1544
  return_dict=return_dict,
1545
+ sliding_window=sliding_window
1546
  )
1547
 
1548
  sequence_output, pooled_output = outputs[:2]
 
1785
  output_attentions: Optional[bool] = None,
1786
  output_hidden_states: Optional[bool] = None,
1787
  return_dict: Optional[bool] = None,
1788
+ sliding_window: Optional[int] = None,
1789
  ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
1790
  r"""
1791
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
 
1810
  output_attentions=output_attentions,
1811
  output_hidden_states=output_hidden_states,
1812
  return_dict=return_dict,
1813
+ sliding_window=sliding_window
1814
  )
1815
 
1816
  sequence_output = outputs[0]