GGUF
🇪🇺 Region: EU
ajinauser commited on
Commit
4f48f9b
·
verified ·
1 Parent(s): 67f160a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +186 -0
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - jinaai/jina-code-embeddings-1.5b
4
+ base_model_relation: quantized
5
+ license: cc-by-nc-4.0
6
+ ---
7
+
8
+ <p align="center">
9
+ <img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
10
+ </p>
11
+
12
+ <p align="center">
13
+ <b>The GGUF version of the code embedding model trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
14
+ </p>
15
+
16
+ # Jina Code Embeddings: A Small but Performant Code Embedding Model
17
+
18
+ ## Intended Usage & Model Info
19
+
20
+ `jina-code-embeddings-1.5b-GGUF` is the **GGUF export** of our [jina-code-embeddings-1.5b](https://huggingface.co/jinaai/jina-code-embeddings-1.5b), built on [Qwen/Qwen2.5-Coder-1.5B](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B).
21
+
22
+ The model supports code retrieval and technical QA across **15+ programming languages** and multiple domains, including web development, software development, machine learning, data science, and educational coding problems.
23
+
24
+ ### Key Features
25
+ | Feature | Jina Code Embeddings 1.5B GGUF |
26
+ |------------------------|--------------------------------|
27
+ | Base Model | Qwen2.5-Coder-1.5B |
28
+ | Supported Tasks | `nl2code`, `code2code`, `code2nl`, `code2completion`, `qa` |
29
+ | Max Sequence Length | 32768 (**recommended ≤ 8192**) |
30
+ | Embedding Vector Dim | **896** |
31
+ | Matryoshka Dimensions | 64, 128, 256, 512, 896 (**client-side slice**) |
32
+ | Pooling Strategy | **MUST use `--pooling last`** (EOS) |
33
+
34
+ > **Matryoshka note:** `llama.cpp` always returns **896-d** embeddings for this model. To use 64/128/256/512, **slice client-side** (e.g., take the first *k* elements).
35
+
36
+ ---
37
+
38
+ ## Task Instructions
39
+
40
+ Prefix inputs with task-specific instructions:
41
+
42
+ ```python
43
+ INSTRUCTION_CONFIG = {
44
+ "nl2code": {
45
+ "query": "Find the most relevant code snippet given the following query:\n",
46
+ "passage": "Candidate code snippet:\n"
47
+ },
48
+ "qa": {
49
+ "query": "Find the most relevant answer given the following question:\n",
50
+ "passage": "Candidate answer:\n"
51
+ },
52
+ "code2code": {
53
+ "query": "Find an equivalent code snippet given the following code snippet:\n",
54
+ "passage": "Candidate code snippet:\n"
55
+ },
56
+ "code2nl": {
57
+ "query": "Find the most relevant comment given the following code snippet:\n",
58
+ "passage": "Candidate comment:\n"
59
+ },
60
+ "code2completion": {
61
+ "query": "Find the most relevant completion given the following start of code snippet:\n",
62
+ "passage": "Candidate completion:\n"
63
+ }
64
+ }
65
+ ````
66
+
67
+ Use the appropriate prefix for **queries** and **passages** at inference time.
68
+
69
+ ---
70
+
71
+ ## Install `llama.cpp`
72
+
73
+ Follow the official instructions: **[https://github.com/ggerganov/llama.cpp](https://github.com/ggerganov/llama.cpp)**
74
+
75
+ ---
76
+
77
+ ## Model files
78
+
79
+ Hugging Face repo (GGUF): **[https://huggingface.co/jinaai/jina-code-embeddings-1.5b-GGUF](https://huggingface.co/jinaai/jina-code-embeddings-1.5b-GGUF)**
80
+
81
+ Pick a file (e.g., `jina-code-embeddings-1.5b-F16.gguf`). You can either:
82
+
83
+ * **auto-download** by passing the **repo and file directly** to `llama.cpp`
84
+ * **use a local path** with `-m`
85
+
86
+ ---
87
+
88
+ ## A) CLI embeddings with `llama-embedding`
89
+
90
+ ### Auto-download from Hugging Face (repo + file)
91
+
92
+ ```bash
93
+ ./llama-embedding \
94
+ --hf-repo jinaai/jina-code-embeddings-1.5b-GGUF \
95
+ --hf-file jina-code-embeddings-1.5b-F16.gguf \
96
+ --pooling last \
97
+ -p "Find the most relevant code snippet given the following query:
98
+ print hello world in python"
99
+ ```
100
+
101
+ ### Local file
102
+
103
+ ```bash
104
+ ./llama-embedding \
105
+ -m /path/to/jina-code-embeddings-1.5b-F16.gguf \
106
+ --pooling last \
107
+ -p "Find the most relevant code snippet given the following query:
108
+ print hello world in python"
109
+ ```
110
+
111
+ > Outputs a single **896-d** vector to stdout. For smaller sizes, slice client-side.
112
+
113
+ ---
114
+
115
+ ## B) HTTP service with `llama-server`
116
+
117
+ ### Auto-download from Hugging Face (repo + file)
118
+
119
+ ```bash
120
+ ./llama-server \
121
+ --embedding \
122
+ --hf-repo jinaai/jina-code-embeddings-1.5b-GGUF \
123
+ --hf-file jina-code-embeddings-1.5b-F16.gguf \
124
+ --host 0.0.0.0 \
125
+ --port 8080 \
126
+ --ctx-size 32768 \
127
+ --ubatch-size 8192 \
128
+ --pooling last
129
+ ```
130
+
131
+ ### Local file
132
+
133
+ ```bash
134
+ ./llama-server \
135
+ --embedding \
136
+ -m /path/to/jina-code-embeddings-1.5b-F16.gguf \
137
+ --host 0.0.0.0 \
138
+ --port 8080 \
139
+ --ctx-size 32768 \
140
+ --ubatch-size 8192 \
141
+ --pooling last
142
+ ```
143
+
144
+ > Tips: `-ngl <N>` to offload layers to GPU. Max context is 32768 but stick to `--ubatch-size` ≤ 8192 for best results.
145
+
146
+ ---
147
+
148
+ ## Query examples (HTTP)
149
+
150
+ ### Native endpoint (`/embedding`)
151
+
152
+ ```bash
153
+ curl -X POST http://localhost:8080/embedding \
154
+ -H "Content-Type: application/json" \
155
+ -d '{
156
+ "content": [
157
+ "Find the most relevant code snippet given the following query:\nprint hello world in python",
158
+ "Candidate code snippet:\nprint(\"Hello World!\")"
159
+ ]
160
+ }'
161
+ ```
162
+
163
+ ### OpenAI-compatible (`/v1/embeddings`)
164
+
165
+ ```bash
166
+ curl http://localhost:8080/v1/embeddings \
167
+ -H "Content-Type: application/json" \
168
+ -d '{
169
+ "input": [
170
+ "Find the most relevant code snippet given the following query:\nprint hello world in python",
171
+ "Candidate code snippet:\nprint(\"Hello World!\")"
172
+ ]
173
+ }'
174
+ ```
175
+
176
+ ---
177
+
178
+ ## Training & Evaluation
179
+
180
+ See our technical report: **[https://arxiv.org/abs/2508.21290](https://arxiv.org/abs/2508.21290)**
181
+
182
+ ---
183
+
184
+ ## Contact
185
+
186
+ Join our Discord: **[https://discord.jina.ai](https://discord.jina.ai)**