Commit
·
c1fed70
1
Parent(s):
bb35eba
upload evaluation scripts
Browse files- mteb_evaluation.py +118 -0
- negation_evaluation.py +20 -0
mteb_evaluation.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Script for evaluating Jina Embedding Models on the MTEB benchmark.
|
| 3 |
+
|
| 4 |
+
This script is based on the MTEB example:
|
| 5 |
+
https://github.com/embeddings-benchmark/mteb/blob/main/scripts/run_mteb_english.py
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
from mteb import MTEB
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
| 12 |
+
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger("main")
|
| 16 |
+
|
| 17 |
+
TASK_LIST_CLASSIFICATION = [
|
| 18 |
+
"AmazonCounterfactualClassification",
|
| 19 |
+
"AmazonPolarityClassification",
|
| 20 |
+
"AmazonReviewsClassification",
|
| 21 |
+
"Banking77Classification",
|
| 22 |
+
"EmotionClassification",
|
| 23 |
+
"ImdbClassification",
|
| 24 |
+
"MassiveIntentClassification",
|
| 25 |
+
"MassiveScenarioClassification",
|
| 26 |
+
"MTOPDomainClassification",
|
| 27 |
+
"MTOPIntentClassification",
|
| 28 |
+
"ToxicConversationsClassification",
|
| 29 |
+
"TweetSentimentExtractionClassification",
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
TASK_LIST_CLUSTERING = [
|
| 33 |
+
"ArxivClusteringP2P",
|
| 34 |
+
"ArxivClusteringS2S",
|
| 35 |
+
"BiorxivClusteringP2P",
|
| 36 |
+
"BiorxivClusteringS2S",
|
| 37 |
+
"MedrxivClusteringP2P",
|
| 38 |
+
"MedrxivClusteringS2S",
|
| 39 |
+
"RedditClustering",
|
| 40 |
+
"RedditClusteringP2P",
|
| 41 |
+
"StackExchangeClustering",
|
| 42 |
+
"StackExchangeClusteringP2P",
|
| 43 |
+
"TwentyNewsgroupsClustering",
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 47 |
+
"SprintDuplicateQuestions",
|
| 48 |
+
"TwitterSemEval2015",
|
| 49 |
+
"TwitterURLCorpus",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
TASK_LIST_RERANKING = [
|
| 53 |
+
"AskUbuntuDupQuestions",
|
| 54 |
+
"MindSmallReranking",
|
| 55 |
+
"SciDocsRR",
|
| 56 |
+
"StackOverflowDupQuestions",
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
TASK_LIST_RETRIEVAL = [
|
| 60 |
+
"ArguAna",
|
| 61 |
+
"ClimateFEVER",
|
| 62 |
+
"CQADupstackAndroidRetrieval",
|
| 63 |
+
"CQADupstackEnglishRetrieval",
|
| 64 |
+
"CQADupstackGamingRetrieval",
|
| 65 |
+
"CQADupstackGisRetrieval",
|
| 66 |
+
"CQADupstackMathematicaRetrieval",
|
| 67 |
+
"CQADupstackPhysicsRetrieval",
|
| 68 |
+
"CQADupstackProgrammersRetrieval",
|
| 69 |
+
"CQADupstackStatsRetrieval",
|
| 70 |
+
"CQADupstackTexRetrieval",
|
| 71 |
+
"CQADupstackUnixRetrieval",
|
| 72 |
+
"CQADupstackWebmastersRetrieval",
|
| 73 |
+
"CQADupstackWordpressRetrieval",
|
| 74 |
+
"DBPedia",
|
| 75 |
+
"FEVER",
|
| 76 |
+
"FiQA2018",
|
| 77 |
+
"HotpotQA",
|
| 78 |
+
"MSMARCO",
|
| 79 |
+
"NFCorpus",
|
| 80 |
+
"NQ",
|
| 81 |
+
"QuoraRetrieval",
|
| 82 |
+
"SCIDOCS",
|
| 83 |
+
"SciFact",
|
| 84 |
+
"Touche2020",
|
| 85 |
+
"TRECCOVID",
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
TASK_LIST_STS = [
|
| 89 |
+
"BIOSSES",
|
| 90 |
+
"SICK-R",
|
| 91 |
+
"STS12",
|
| 92 |
+
"STS13",
|
| 93 |
+
"STS14",
|
| 94 |
+
"STS15",
|
| 95 |
+
"STS16",
|
| 96 |
+
"STS17",
|
| 97 |
+
"STS22",
|
| 98 |
+
"STSBenchmark",
|
| 99 |
+
"SummEval",
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
TASK_LIST = (
|
| 103 |
+
TASK_LIST_CLASSIFICATION
|
| 104 |
+
+ TASK_LIST_CLUSTERING
|
| 105 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
| 106 |
+
+ TASK_LIST_RERANKING
|
| 107 |
+
+ TASK_LIST_RETRIEVAL
|
| 108 |
+
+ TASK_LIST_STS
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
model_name = "jinaai/jina-embedding-s-en-v1"
|
| 112 |
+
model = SentenceTransformer(model_name)
|
| 113 |
+
|
| 114 |
+
for task in TASK_LIST:
|
| 115 |
+
logger.info(f"Running task: {task}")
|
| 116 |
+
eval_splits = ["dev"] if task == "MSMARCO" else ["test"]
|
| 117 |
+
evaluation = MTEB(tasks=[task], task_langs=["en"]) # Remove "en" for running all languages
|
| 118 |
+
evaluation.run(model, output_folder=f"results/{model_name}", eval_splits=eval_splits)
|
negation_evaluation.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
from torch.nn.functional import cosine_similarity as cos_sim
|
| 4 |
+
|
| 5 |
+
model_name = "jinaai/jina-embedding-s-en-v1"
|
| 6 |
+
model = SentenceTransformer(model_name)
|
| 7 |
+
|
| 8 |
+
dataset = load_dataset('jinaai/negation-dataset', split='test')
|
| 9 |
+
anchor_embeddings = model.encode([item['anchor'] for item in dataset], convert_to_tensor=True)
|
| 10 |
+
entailment_embeddings = model.encode([item['entailment'] for item in dataset], convert_to_tensor=True)
|
| 11 |
+
negative_embeddings = model.encode([item['negative'] for item in dataset], convert_to_tensor=True)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
positive_similarities = cos_sim(anchor_embeddings, entailment_embeddings)
|
| 15 |
+
entailment_negatives = cos_sim(negative_embeddings, entailment_embeddings)
|
| 16 |
+
anchor_negatives = cos_sim(anchor_embeddings, negative_embeddings)
|
| 17 |
+
entailment_score = sum(positive_similarities > entailment_negatives).item() / len(anchor_embeddings)
|
| 18 |
+
anchor_score = sum(positive_similarities > anchor_negatives).item() / len(anchor_embeddings)
|
| 19 |
+
print('entailment_score: ', entailment_score)
|
| 20 |
+
print('anchor_score: ', anchor_score)
|