Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -7,6 +7,7 @@ tags:
|
|
7 |
language:
|
8 |
- multilingual
|
9 |
base_model: jinaai/jina-reranker-v3
|
|
|
10 |
inference: false
|
11 |
license: cc-by-nc-4.0
|
12 |
library_name: mlx
|
@@ -14,15 +15,7 @@ library_name: mlx
|
|
14 |
|
15 |
# jina-reranker-v3-mlx
|
16 |
|
17 |
-
MLX implementation of [jina-reranker-v3](https://huggingface.co/jinaai/jina-reranker-v3), a 0.6B parameter multilingual document reranker optimized for Apple Silicon.
|
18 |
-
|
19 |
-
## Features
|
20 |
-
|
21 |
-
- π Native Apple Silicon acceleration via MLX
|
22 |
-
- π― 100% accuracy match with original PyTorch implementation
|
23 |
-
- π¦ Minimal dependencies (no transformers needed)
|
24 |
-
- π Multilingual support (same as original model)
|
25 |
-
- β‘ Efficient inference on M-series chips
|
26 |
|
27 |
## Installation
|
28 |
|
@@ -101,21 +94,6 @@ reranker = MLXReranker(
|
|
101 |
)
|
102 |
```
|
103 |
|
104 |
-
## Model Files
|
105 |
-
|
106 |
-
This directory should contain:
|
107 |
-
- `model.safetensors` - MLX-converted Qwen3 model weights
|
108 |
-
- `projector.safetensors` - MLP projector weights
|
109 |
-
- `tokenizer.json` - Tokenizer configuration
|
110 |
-
- `config.json` - Model configuration
|
111 |
-
- Other tokenizer files (vocab.json, merges.txt, etc.)
|
112 |
-
|
113 |
-
## Performance
|
114 |
-
|
115 |
-
Tested on Apple M-series chips with 100% ranking accuracy compared to the original PyTorch implementation:
|
116 |
-
- Mean score difference: < 0.001
|
117 |
-
- Perfect ranking matches: 100%
|
118 |
-
- Inference speed: ~3-4s for 6 documents (Apple M1/M2)
|
119 |
|
120 |
## Citation
|
121 |
|
|
|
7 |
language:
|
8 |
- multilingual
|
9 |
base_model: jinaai/jina-reranker-v3
|
10 |
+
base_model_relation: quantized
|
11 |
inference: false
|
12 |
license: cc-by-nc-4.0
|
13 |
library_name: mlx
|
|
|
15 |
|
16 |
# jina-reranker-v3-mlx
|
17 |
|
18 |
+
MLX implementation of [jina-reranker-v3](https://huggingface.co/jinaai/jina-reranker-v3), a 0.6B parameter multilingual document reranker optimized for Apple Silicon. Features native Apple Silicon acceleration via MLX with 100% compatibility to the original PyTorch implementation. No transformers library required.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## Installation
|
21 |
|
|
|
94 |
)
|
95 |
```
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
## Citation
|
99 |
|