|
"""
|
|
Geneformer collator for gene and cell classification.
|
|
|
|
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene and cell classification.
|
|
"""
|
|
import numpy as np
|
|
import torch
|
|
import warnings
|
|
from enum import Enum
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
from transformers import (
|
|
DataCollatorForTokenClassification,
|
|
SpecialTokensMixin,
|
|
BatchEncoding,
|
|
)
|
|
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
|
from transformers.utils.generic import _is_tensorflow, _is_torch
|
|
|
|
from .pretrainer import token_dictionary
|
|
|
|
EncodedInput = List[int]
|
|
logger = logging.get_logger(__name__)
|
|
VERY_LARGE_INTEGER = int(
|
|
1e30
|
|
)
|
|
LARGE_INTEGER = int(
|
|
1e20
|
|
)
|
|
|
|
|
|
|
|
class ExplicitEnum(Enum):
|
|
"""
|
|
Enum with more explicit error message for missing values.
|
|
"""
|
|
|
|
@classmethod
|
|
def _missing_(cls, value):
|
|
raise ValueError(
|
|
"%r is not a valid %s, please select one of %s"
|
|
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
|
|
)
|
|
|
|
class TruncationStrategy(ExplicitEnum):
|
|
"""
|
|
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
|
tab-completion in an IDE.
|
|
"""
|
|
|
|
ONLY_FIRST = "only_first"
|
|
ONLY_SECOND = "only_second"
|
|
LONGEST_FIRST = "longest_first"
|
|
DO_NOT_TRUNCATE = "do_not_truncate"
|
|
|
|
|
|
|
|
class PaddingStrategy(ExplicitEnum):
|
|
"""
|
|
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
|
|
in an IDE.
|
|
"""
|
|
|
|
LONGEST = "longest"
|
|
MAX_LENGTH = "max_length"
|
|
DO_NOT_PAD = "do_not_pad"
|
|
|
|
|
|
|
|
class TensorType(ExplicitEnum):
|
|
"""
|
|
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
|
tab-completion in an IDE.
|
|
"""
|
|
|
|
PYTORCH = "pt"
|
|
TENSORFLOW = "tf"
|
|
NUMPY = "np"
|
|
JAX = "jax"
|
|
|
|
|
|
class PrecollatorForGeneAndCellClassification(SpecialTokensMixin):
|
|
mask_token = "<mask>"
|
|
mask_token_id = token_dictionary.get("<mask>")
|
|
pad_token = "<pad>"
|
|
pad_token_id = token_dictionary.get("<pad>")
|
|
padding_side = "right"
|
|
all_special_ids = [
|
|
token_dictionary.get("<mask>"),
|
|
token_dictionary.get("<pad>")
|
|
]
|
|
model_input_names = ["input_ids"]
|
|
|
|
def _get_padding_truncation_strategies(
|
|
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
|
):
|
|
"""
|
|
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
|
and pad_to_max_length) and behaviors.
|
|
"""
|
|
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
|
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
|
|
|
|
|
|
|
if max_length is not None and padding is False and truncation is False:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
|
|
logger.warning(
|
|
"Truncation was not explicitly activated but `max_length` is provided a specific value, "
|
|
"please use `truncation=True` to explicitly truncate examples to max length. "
|
|
"Defaulting to 'longest_first' truncation strategy. "
|
|
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy "
|
|
"more precisely by providing a specific strategy to `truncation`."
|
|
)
|
|
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
|
truncation = "longest_first"
|
|
|
|
|
|
if padding is False and old_pad_to_max_length:
|
|
if verbose:
|
|
warnings.warn(
|
|
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
|
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
|
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
|
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
|
"maximal input size of the model (e.g. 512 for Bert).",
|
|
FutureWarning,
|
|
)
|
|
if max_length is None:
|
|
padding_strategy = PaddingStrategy.LONGEST
|
|
else:
|
|
padding_strategy = PaddingStrategy.MAX_LENGTH
|
|
elif padding is not False:
|
|
if padding is True:
|
|
padding_strategy = PaddingStrategy.LONGEST
|
|
elif not isinstance(padding, PaddingStrategy):
|
|
padding_strategy = PaddingStrategy(padding)
|
|
elif isinstance(padding, PaddingStrategy):
|
|
padding_strategy = padding
|
|
else:
|
|
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
|
|
|
|
|
if truncation is False and old_truncation_strategy != "do_not_truncate":
|
|
if verbose:
|
|
warnings.warn(
|
|
"The `truncation_strategy` argument is deprecated and will be removed in a future version, "
|
|
"use `truncation=True` to truncate examples to a max length. You can give a specific "
|
|
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the "
|
|
"maximal input size of the model (e.g. 512 for Bert). "
|
|
" If you have pairs of inputs, you can give a specific truncation strategy selected among "
|
|
"`truncation='only_first'` (will only truncate the first sentence in the pairs) "
|
|
"`truncation='only_second'` (will only truncate the second sentence in the pairs) "
|
|
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).",
|
|
FutureWarning,
|
|
)
|
|
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
|
elif truncation is not False:
|
|
if truncation is True:
|
|
truncation_strategy = (
|
|
TruncationStrategy.LONGEST_FIRST
|
|
)
|
|
elif not isinstance(truncation, TruncationStrategy):
|
|
truncation_strategy = TruncationStrategy(truncation)
|
|
elif isinstance(truncation, TruncationStrategy):
|
|
truncation_strategy = truncation
|
|
else:
|
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
|
|
|
|
|
if max_length is None:
|
|
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
|
if self.model_max_length > LARGE_INTEGER:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
|
|
logger.warning(
|
|
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
|
"Default to no padding."
|
|
)
|
|
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
|
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
|
else:
|
|
max_length = self.model_max_length
|
|
|
|
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
|
if self.model_max_length > LARGE_INTEGER:
|
|
if verbose:
|
|
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
|
|
logger.warning(
|
|
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
|
"Default to no truncation."
|
|
)
|
|
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
|
|
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
|
else:
|
|
max_length = self.model_max_length
|
|
|
|
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
|
|
raise ValueError(
|
|
"Asking to pad but the tokenizer does not have a padding token. "
|
|
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
|
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
|
)
|
|
|
|
|
|
if (
|
|
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
|
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
|
and pad_to_multiple_of is not None
|
|
and max_length is not None
|
|
and (max_length % pad_to_multiple_of != 0)
|
|
):
|
|
raise ValueError(
|
|
f"Truncation and padding are both activated but "
|
|
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
|
)
|
|
|
|
return padding_strategy, truncation_strategy, max_length, kwargs
|
|
|
|
def pad(
|
|
self,
|
|
encoded_inputs: Union[
|
|
BatchEncoding,
|
|
List[BatchEncoding],
|
|
Dict[str, EncodedInput],
|
|
Dict[str, List[EncodedInput]],
|
|
List[Dict[str, EncodedInput]],
|
|
],
|
|
class_type,
|
|
padding: Union[bool, str, PaddingStrategy] = True,
|
|
max_length: Optional[int] = None,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = True,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
verbose: bool = True,
|
|
) -> BatchEncoding:
|
|
"""
|
|
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
|
in the batch.
|
|
|
|
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
|
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
|
|
|
.. note::
|
|
|
|
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
|
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
|
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
|
|
|
Args:
|
|
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
|
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
|
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
|
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
|
well as in a PyTorch Dataloader collate function.
|
|
|
|
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
|
see the note above for the return type.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
|
index) among:
|
|
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
|
single sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
|
>= 7.5 (Volta).
|
|
return_attention_mask (:obj:`bool`, `optional`):
|
|
Whether to return the attention mask. If left to the default, will return the attention mask according
|
|
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
|
|
|
`What are attention masks? <../glossary.html#attention-mask>`__
|
|
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`):
|
|
If set, will return tensors instead of list of python integers. Acceptable values are:
|
|
|
|
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
|
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
|
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
|
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Whether or not to print more information and warnings.
|
|
"""
|
|
|
|
|
|
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
|
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
|
|
|
|
|
if self.model_input_names[0] not in encoded_inputs:
|
|
raise ValueError(
|
|
"You should supply an encoding or a list of encodings to this method"
|
|
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
|
)
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
|
|
if not required_input:
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = []
|
|
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
first_element = required_input[0]
|
|
if isinstance(first_element, (list, tuple)):
|
|
|
|
index = 0
|
|
while len(required_input[index]) == 0:
|
|
index += 1
|
|
if index < len(required_input):
|
|
first_element = required_input[index][0]
|
|
|
|
if not isinstance(first_element, (int, list, tuple)):
|
|
if is_tf_available() and _is_tensorflow(first_element):
|
|
return_tensors = "tf" if return_tensors is None else return_tensors
|
|
elif is_torch_available() and _is_torch(first_element):
|
|
return_tensors = "pt" if return_tensors is None else return_tensors
|
|
elif isinstance(first_element, np.ndarray):
|
|
return_tensors = "np" if return_tensors is None else return_tensors
|
|
else:
|
|
raise ValueError(
|
|
f"type of {first_element} unknown: {type(first_element)}. "
|
|
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
|
)
|
|
|
|
for key, value in encoded_inputs.items():
|
|
encoded_inputs[key] = to_py_obj(value)
|
|
|
|
|
|
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
|
padding=padding, max_length=max_length, verbose=verbose
|
|
)
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
if required_input and not isinstance(required_input[0], (list, tuple)):
|
|
encoded_inputs = self._pad(
|
|
encoded_inputs,
|
|
class_type=class_type,
|
|
max_length=max_length,
|
|
padding_strategy=padding_strategy,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
|
|
|
batch_size = len(required_input)
|
|
assert all(
|
|
len(v) == batch_size for v in encoded_inputs.values()
|
|
), "Some items in the output dictionary have a different batch size than others."
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = max(len(inputs) for inputs in required_input)
|
|
padding_strategy = PaddingStrategy.MAX_LENGTH
|
|
|
|
batch_outputs = {}
|
|
for i in range(batch_size):
|
|
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
|
outputs = self._pad(
|
|
inputs,
|
|
class_type=class_type,
|
|
max_length=max_length,
|
|
padding_strategy=padding_strategy,
|
|
pad_to_multiple_of=pad_to_multiple_of,
|
|
return_attention_mask=return_attention_mask,
|
|
)
|
|
|
|
for key, value in outputs.items():
|
|
if key not in batch_outputs:
|
|
batch_outputs[key] = []
|
|
batch_outputs[key].append(value)
|
|
if class_type == "cell":
|
|
del batch_outputs["label"]
|
|
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
|
|
|
def _pad(
|
|
self,
|
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
|
class_type,
|
|
max_length: Optional[int] = None,
|
|
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
return_attention_mask: Optional[bool] = True,
|
|
) -> dict:
|
|
"""
|
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
|
|
|
Args:
|
|
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
|
max_length: maximum length of the returned list and optionally padding length (see below).
|
|
Will truncate by taking into account the special tokens.
|
|
padding_strategy: PaddingStrategy to use for padding.
|
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
|
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
|
The tokenizer padding sides are defined in self.padding_side:
|
|
|
|
- 'left': pads on the left of the sequences
|
|
- 'right': pads on the right of the sequences
|
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
|
>= 7.5 (Volta).
|
|
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
|
"""
|
|
|
|
if return_attention_mask is None:
|
|
return_attention_mask = "attention_mask" in self.model_input_names
|
|
|
|
required_input = encoded_inputs[self.model_input_names[0]]
|
|
|
|
if padding_strategy == PaddingStrategy.LONGEST:
|
|
max_length = len(required_input)
|
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
|
|
|
if needs_to_be_padded:
|
|
difference = max_length - len(required_input)
|
|
if self.padding_side == "right":
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
|
if "token_type_ids" in encoded_inputs:
|
|
encoded_inputs["token_type_ids"] = (
|
|
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
|
)
|
|
if "special_tokens_mask" in encoded_inputs:
|
|
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
|
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
|
if class_type == "gene":
|
|
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference
|
|
elif self.padding_side == "left":
|
|
if return_attention_mask:
|
|
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
|
if "token_type_ids" in encoded_inputs:
|
|
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
|
"token_type_ids"
|
|
]
|
|
if "special_tokens_mask" in encoded_inputs:
|
|
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
|
if class_type == "gene":
|
|
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"]
|
|
else:
|
|
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
|
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
|
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
|
|
|
return encoded_inputs
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of ids of the first sequence.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
List of ids of the second sequence.
|
|
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
Returns:
|
|
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
assert already_has_special_tokens and token_ids_1 is None, (
|
|
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
|
"Please use a slow (full python) tokenizer to activate this argument."
|
|
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
|
"to get the special tokens mask in any tokenizer. "
|
|
)
|
|
|
|
all_special_ids = self.all_special_ids
|
|
|
|
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]
|
|
|
|
return special_tokens_mask
|
|
|
|
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
|
|
"""
|
|
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
|
vocabulary.
|
|
Args:
|
|
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
|
|
Returns:
|
|
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
|
|
"""
|
|
if tokens is None:
|
|
return None
|
|
|
|
if isinstance(tokens, str):
|
|
return self._convert_token_to_id_with_added_voc(tokens)
|
|
|
|
ids = []
|
|
for token in tokens:
|
|
ids.append(self._convert_token_to_id_with_added_voc(token))
|
|
return ids
|
|
|
|
def _convert_token_to_id_with_added_voc(self, token):
|
|
if token is None:
|
|
return None
|
|
|
|
return token_dictionary.get(token)
|
|
|
|
def __len__(self):
|
|
return len(token_dictionary)
|
|
|
|
|
|
|
|
|
|
class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
|
"""
|
|
Data collator that will dynamically pad the inputs received, as well as the labels.
|
|
Args:
|
|
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
|
The tokenizer used for encoding the data.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
|
among:
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
|
7.5 (Volta).
|
|
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
|
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
|
"""
|
|
|
|
tokenizer = PrecollatorForGeneAndCellClassification()
|
|
class_type = "gene"
|
|
padding: Union[bool, str, PaddingStrategy] = True
|
|
max_length: Optional[int] = None
|
|
pad_to_multiple_of: Optional[int] = None
|
|
label_pad_token_id: int = -100
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(
|
|
tokenizer=self.tokenizer,
|
|
padding=self.padding,
|
|
max_length=self.max_length,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
label_pad_token_id=self.label_pad_token_id,
|
|
*args, **kwargs)
|
|
|
|
def _prepare_batch(self, features):
|
|
label_name = "label" if "label" in features[0].keys() else "labels"
|
|
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
|
batch = self.tokenizer.pad(
|
|
features,
|
|
class_type=self.class_type,
|
|
padding=self.padding,
|
|
max_length=self.max_length,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
)
|
|
return batch
|
|
|
|
def __call__(self, features):
|
|
batch = self._prepare_batch(features)
|
|
|
|
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
|
return batch
|
|
|
|
|
|
class DataCollatorForCellClassification(DataCollatorForGeneClassification):
|
|
|
|
class_type = "cell"
|
|
|
|
def _prepare_batch(self, features):
|
|
|
|
batch = super()._prepare_batch(features)
|
|
|
|
|
|
|
|
|
|
first = features[0]
|
|
if "label" in first and first["label"] is not None:
|
|
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
|
dtype = torch.long if isinstance(label, int) else torch.float
|
|
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
|
|
|
return batch
|
|
|