File size: 9,273 Bytes
45cb3aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd-pytorch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-pytorch

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7042
- Answer: {'precision': 0.712403951701427, 'recall': 0.8022249690976514, 'f1': 0.7546511627906977, 'number': 809}
- Header: {'precision': 0.3203125, 'recall': 0.3445378151260504, 'f1': 0.33198380566801616, 'number': 119}
- Question: {'precision': 0.7747589833479404, 'recall': 0.8300469483568075, 'f1': 0.8014505893019038, 'number': 1065}
- Overall Precision: 0.7220
- Overall Recall: 0.7898
- Overall F1: 0.7544
- Overall Accuracy: 0.8078

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                       | Header                                                                                                        | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7641        | 1.0   | 10   | 1.5569          | {'precision': 0.01979045401629802, 'recall': 0.021013597033374538, 'f1': 0.02038369304556355, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                   | {'precision': 0.20930232558139536, 'recall': 0.15211267605633802, 'f1': 0.1761827079934747, 'number': 1065} | 0.1096            | 0.0898         | 0.0987     | 0.3917           |
| 1.4096        | 2.0   | 20   | 1.1718          | {'precision': 0.18729096989966554, 'recall': 0.138442521631644, 'f1': 0.15920398009950248, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                   | {'precision': 0.4800601956358164, 'recall': 0.5990610328638498, 'f1': 0.5329991645781119, 'number': 1065}   | 0.3892            | 0.3763         | 0.3827     | 0.6045           |
| 1.0362        | 3.0   | 30   | 0.9322          | {'precision': 0.5212620027434842, 'recall': 0.46971569839307786, 'f1': 0.494148244473342, 'number': 809}     | {'precision': 0.10344827586206896, 'recall': 0.025210084033613446, 'f1': 0.040540540540540536, 'number': 119} | {'precision': 0.6362847222222222, 'recall': 0.6882629107981221, 'f1': 0.661253946774921, 'number': 1065}    | 0.5843            | 0.5600         | 0.5719     | 0.7091           |
| 0.8024        | 4.0   | 40   | 0.7725          | {'precision': 0.6457858769931663, 'recall': 0.7008652657601978, 'f1': 0.6721991701244814, 'number': 809}     | {'precision': 0.1791044776119403, 'recall': 0.10084033613445378, 'f1': 0.12903225806451613, 'number': 119}    | {'precision': 0.6911130284728214, 'recall': 0.752112676056338, 'f1': 0.7203237410071942, 'number': 1065}    | 0.6559            | 0.6924         | 0.6737     | 0.7700           |
| 0.6483        | 5.0   | 50   | 0.7035          | {'precision': 0.6575790621592148, 'recall': 0.7453646477132262, 'f1': 0.6987253765932794, 'number': 809}     | {'precision': 0.26881720430107525, 'recall': 0.21008403361344538, 'f1': 0.2358490566037736, 'number': 119}    | {'precision': 0.7120067170445005, 'recall': 0.7962441314553991, 'f1': 0.75177304964539, 'number': 1065}     | 0.6706            | 0.7406         | 0.7039     | 0.7857           |
| 0.5298        | 6.0   | 60   | 0.6747          | {'precision': 0.6925601750547046, 'recall': 0.7824474660074165, 'f1': 0.73476494486361, 'number': 809}       | {'precision': 0.3472222222222222, 'recall': 0.21008403361344538, 'f1': 0.2617801047120419, 'number': 119}     | {'precision': 0.7333333333333333, 'recall': 0.8366197183098592, 'f1': 0.7815789473684212, 'number': 1065}   | 0.7038            | 0.7772         | 0.7387     | 0.7984           |
| 0.4644        | 7.0   | 70   | 0.6752          | {'precision': 0.6750261233019854, 'recall': 0.7985166872682324, 'f1': 0.7315968289920726, 'number': 809}     | {'precision': 0.29357798165137616, 'recall': 0.2689075630252101, 'f1': 0.28070175438596495, 'number': 119}    | {'precision': 0.7529812606473595, 'recall': 0.8300469483568075, 'f1': 0.7896382313532827, 'number': 1065}   | 0.6973            | 0.7837         | 0.7380     | 0.8010           |
| 0.4253        | 8.0   | 80   | 0.6664          | {'precision': 0.699666295884316, 'recall': 0.7775030902348579, 'f1': 0.7365339578454333, 'number': 809}      | {'precision': 0.3106796116504854, 'recall': 0.2689075630252101, 'f1': 0.28828828828828823, 'number': 119}     | {'precision': 0.7704485488126649, 'recall': 0.8225352112676056, 'f1': 0.7956403269754768, 'number': 1065}   | 0.7186            | 0.7712         | 0.7439     | 0.8017           |
| 0.3815        | 9.0   | 90   | 0.6658          | {'precision': 0.6973684210526315, 'recall': 0.7861557478368356, 'f1': 0.7391051714119697, 'number': 809}     | {'precision': 0.3228346456692913, 'recall': 0.3445378151260504, 'f1': 0.3333333333333333, 'number': 119}      | {'precision': 0.7474916387959866, 'recall': 0.8394366197183099, 'f1': 0.7908005307386111, 'number': 1065}   | 0.7029            | 0.7883         | 0.7431     | 0.8053           |
| 0.3391        | 10.0  | 100  | 0.6736          | {'precision': 0.7022900763358778, 'recall': 0.796044499381953, 'f1': 0.7462340672074159, 'number': 809}      | {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119}     | {'precision': 0.7681034482758621, 'recall': 0.8366197183098592, 'f1': 0.8008988764044945, 'number': 1065}   | 0.7159            | 0.7903         | 0.7513     | 0.8073           |
| 0.3117        | 11.0  | 110  | 0.6947          | {'precision': 0.7086956521739131, 'recall': 0.8059332509270705, 'f1': 0.7541931752458069, 'number': 809}     | {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119}     | {'precision': 0.7992667277726856, 'recall': 0.8187793427230047, 'f1': 0.8089053803339518, 'number': 1065}   | 0.7334            | 0.7852         | 0.7584     | 0.8083           |
| 0.2991        | 12.0  | 120  | 0.6963          | {'precision': 0.7058823529411765, 'recall': 0.8009888751545118, 'f1': 0.7504342790966995, 'number': 809}     | {'precision': 0.33064516129032256, 'recall': 0.3445378151260504, 'f1': 0.33744855967078186, 'number': 119}    | {'precision': 0.7716262975778547, 'recall': 0.8375586854460094, 'f1': 0.8032417829806394, 'number': 1065}   | 0.7193            | 0.7933         | 0.7545     | 0.8076           |
| 0.282         | 13.0  | 130  | 0.6991          | {'precision': 0.7153846153846154, 'recall': 0.8046971569839307, 'f1': 0.7574171029668412, 'number': 809}     | {'precision': 0.336, 'recall': 0.35294117647058826, 'f1': 0.3442622950819672, 'number': 119}                  | {'precision': 0.7898032200357782, 'recall': 0.8291079812206573, 'f1': 0.8089784699954191, 'number': 1065}   | 0.7320            | 0.7908         | 0.7603     | 0.8102           |
| 0.2722        | 14.0  | 140  | 0.7044          | {'precision': 0.712253829321663, 'recall': 0.8046971569839307, 'f1': 0.7556587347649449, 'number': 809}      | {'precision': 0.3228346456692913, 'recall': 0.3445378151260504, 'f1': 0.3333333333333333, 'number': 119}      | {'precision': 0.7811120917917035, 'recall': 0.8309859154929577, 'f1': 0.8052775250227479, 'number': 1065}   | 0.7254            | 0.7913         | 0.7569     | 0.8081           |
| 0.2634        | 15.0  | 150  | 0.7042          | {'precision': 0.712403951701427, 'recall': 0.8022249690976514, 'f1': 0.7546511627906977, 'number': 809}      | {'precision': 0.3203125, 'recall': 0.3445378151260504, 'f1': 0.33198380566801616, 'number': 119}              | {'precision': 0.7747589833479404, 'recall': 0.8300469483568075, 'f1': 0.8014505893019038, 'number': 1065}   | 0.7220            | 0.7898         | 0.7544     | 0.8078           |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1
- Datasets 2.6.1
- Tokenizers 0.13.1