--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # rag-topic-model This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("jkdamilola/rag-topic-model") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 6 * Number of training documents: 168
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | to - klarna - for - my - the | 10 | -1_to_klarna_for_my | | 0 | klarna - declined - my - in - ive | 63 | 0_klarna_declined_my_in | | 1 | payment - the - to - for - pay | 33 | 1_payment_the_to_for | | 2 | my - details - klarna - and - call | 27 | 2_my_details_klarna_and | | 3 | store - refund - back - the - credit | 23 | 3_store_refund_back_the | | 4 | the - shoes - ago - havent - sneakers | 12 | 4_the_shoes_ago_havent |
## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: auto * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.6.1 * Sentence-transformers: 3.1.1 * Transformers: 4.42.2 * Numba: 0.60.0 * Plotly: 6.1.2 * Python: 3.9.6