Upload 5 files
Browse files- eval.py +0 -1
- preprocess_dataset.py +0 -4
- train.py +0 -2
- train_tokenizers.py +0 -18
eval.py
CHANGED
|
@@ -20,7 +20,6 @@ transformer = keras.models.load_model('models_europarl/en_cs_translator_saved_20
|
|
| 20 |
def read_files(path, lowercase = False):
|
| 21 |
with open(path, "r", encoding="utf-8") as f:
|
| 22 |
dataset_split = f.read().split("\n")[:-1]
|
| 23 |
-
#to lowercase, idk why
|
| 24 |
if(lowercase):
|
| 25 |
dataset_split = [line.lower() for line in dataset_split]
|
| 26 |
return dataset_split
|
|
|
|
| 20 |
def read_files(path, lowercase = False):
|
| 21 |
with open(path, "r", encoding="utf-8") as f:
|
| 22 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
|
| 23 |
if(lowercase):
|
| 24 |
dataset_split = [line.lower() for line in dataset_split]
|
| 25 |
return dataset_split
|
preprocess_dataset.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
|
| 2 |
import keras_nlp
|
| 3 |
-
import keras
|
| 4 |
import tensorflow.data as tf_data
|
| 5 |
-
import pickle
|
| 6 |
#hyperparameters
|
| 7 |
BATCH_SIZE = 16
|
| 8 |
MAX_SEQUENCE_LENGTH = 64
|
| 9 |
|
| 10 |
-
#load tokenizers/en_vocab to list
|
| 11 |
-
|
| 12 |
def read_files(path, lowercase = False):
|
| 13 |
with open(path, "r", encoding="utf-8") as f:
|
| 14 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
|
| 1 |
|
| 2 |
import keras_nlp
|
|
|
|
| 3 |
import tensorflow.data as tf_data
|
|
|
|
| 4 |
#hyperparameters
|
| 5 |
BATCH_SIZE = 16
|
| 6 |
MAX_SEQUENCE_LENGTH = 64
|
| 7 |
|
|
|
|
|
|
|
| 8 |
def read_files(path, lowercase = False):
|
| 9 |
with open(path, "r", encoding="utf-8") as f:
|
| 10 |
dataset_split = f.read().split("\n")[:-1]
|
train.py
CHANGED
|
@@ -2,7 +2,6 @@
|
|
| 2 |
import keras_nlp
|
| 3 |
import keras
|
| 4 |
import tensorflow.data as tf_data
|
| 5 |
-
import pickle
|
| 6 |
from tensorflow.keras.optimizers import Adam
|
| 7 |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
| 8 |
import datetime
|
|
@@ -13,7 +12,6 @@ EPOCHS = 20
|
|
| 13 |
EMBED_DIM = 256
|
| 14 |
INTERMEDIATE_DIM = 2048
|
| 15 |
NUM_HEADS = 8
|
| 16 |
-
# TODO probably change dynamically
|
| 17 |
MAX_SEQUENCE_LENGTH = 128
|
| 18 |
EN_VOCAB_SIZE = 30000
|
| 19 |
CS_VOCAB_SIZE = 30000
|
|
|
|
| 2 |
import keras_nlp
|
| 3 |
import keras
|
| 4 |
import tensorflow.data as tf_data
|
|
|
|
| 5 |
from tensorflow.keras.optimizers import Adam
|
| 6 |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
| 7 |
import datetime
|
|
|
|
| 12 |
EMBED_DIM = 256
|
| 13 |
INTERMEDIATE_DIM = 2048
|
| 14 |
NUM_HEADS = 8
|
|
|
|
| 15 |
MAX_SEQUENCE_LENGTH = 128
|
| 16 |
EN_VOCAB_SIZE = 30000
|
| 17 |
CS_VOCAB_SIZE = 30000
|
train_tokenizers.py
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
import keras_nlp
|
| 2 |
-
import keras
|
| 3 |
import tensorflow.data as tf_data
|
| 4 |
-
import pickle
|
| 5 |
-
import random
|
| 6 |
|
| 7 |
EN_VOCAB_SIZE = 30000
|
| 8 |
CS_VOCAB_SIZE = 30000
|
|
@@ -20,27 +17,12 @@ def train_word_piece(text_samples, vocab_size, reserved_tokens, save_output_path
|
|
| 20 |
def read_files(path):
|
| 21 |
with open(path, "r", encoding="utf-8") as f:
|
| 22 |
dataset_split = f.read().split("\n")[:-1]
|
| 23 |
-
#to lowercase, idk why
|
| 24 |
dataset_split = [line.lower() for line in dataset_split]
|
| 25 |
return dataset_split
|
| 26 |
|
| 27 |
-
#OPUS cs-en
|
| 28 |
-
# train_cs = read_files('datasets/cs-en/opus.cs-en-train.cs')
|
| 29 |
-
# train_en = read_files('datasets/cs-en/opus.cs-en-train.en')
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
#EUROPARL cs-en
|
| 33 |
train_cs = read_files('datasets/europarl/train-cs-en.cs')
|
| 34 |
train_en = read_files('datasets/europarl/train-cs-en.en')
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
print(train_cs[0])
|
| 39 |
-
print(train_en[0])
|
| 40 |
-
|
| 41 |
-
|
| 42 |
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
|
| 43 |
-
|
| 44 |
en_vocab = train_word_piece(train_en, EN_VOCAB_SIZE, reserved_tokens, "tokenizers/en_europarl_vocab")
|
| 45 |
cs_vocab = train_word_piece(train_cs, CS_VOCAB_SIZE, reserved_tokens, "tokenizers/cs_europarl_vocab")
|
| 46 |
|
|
|
|
| 1 |
import keras_nlp
|
|
|
|
| 2 |
import tensorflow.data as tf_data
|
|
|
|
|
|
|
| 3 |
|
| 4 |
EN_VOCAB_SIZE = 30000
|
| 5 |
CS_VOCAB_SIZE = 30000
|
|
|
|
| 17 |
def read_files(path):
|
| 18 |
with open(path, "r", encoding="utf-8") as f:
|
| 19 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
|
| 20 |
dataset_split = [line.lower() for line in dataset_split]
|
| 21 |
return dataset_split
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
train_cs = read_files('datasets/europarl/train-cs-en.cs')
|
| 24 |
train_en = read_files('datasets/europarl/train-cs-en.en')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
|
|
|
|
| 26 |
en_vocab = train_word_piece(train_en, EN_VOCAB_SIZE, reserved_tokens, "tokenizers/en_europarl_vocab")
|
| 27 |
cs_vocab = train_word_piece(train_cs, CS_VOCAB_SIZE, reserved_tokens, "tokenizers/cs_europarl_vocab")
|
| 28 |
|