Upload 5 files
Browse files- eval.py +0 -1
- preprocess_dataset.py +0 -4
- train.py +0 -2
- train_tokenizers.py +0 -18
eval.py
CHANGED
@@ -20,7 +20,6 @@ transformer = keras.models.load_model('models_europarl/en_cs_translator_saved_20
|
|
20 |
def read_files(path, lowercase = False):
|
21 |
with open(path, "r", encoding="utf-8") as f:
|
22 |
dataset_split = f.read().split("\n")[:-1]
|
23 |
-
#to lowercase, idk why
|
24 |
if(lowercase):
|
25 |
dataset_split = [line.lower() for line in dataset_split]
|
26 |
return dataset_split
|
|
|
20 |
def read_files(path, lowercase = False):
|
21 |
with open(path, "r", encoding="utf-8") as f:
|
22 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
23 |
if(lowercase):
|
24 |
dataset_split = [line.lower() for line in dataset_split]
|
25 |
return dataset_split
|
preprocess_dataset.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
|
2 |
import keras_nlp
|
3 |
-
import keras
|
4 |
import tensorflow.data as tf_data
|
5 |
-
import pickle
|
6 |
#hyperparameters
|
7 |
BATCH_SIZE = 16
|
8 |
MAX_SEQUENCE_LENGTH = 64
|
9 |
|
10 |
-
#load tokenizers/en_vocab to list
|
11 |
-
|
12 |
def read_files(path, lowercase = False):
|
13 |
with open(path, "r", encoding="utf-8") as f:
|
14 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
1 |
|
2 |
import keras_nlp
|
|
|
3 |
import tensorflow.data as tf_data
|
|
|
4 |
#hyperparameters
|
5 |
BATCH_SIZE = 16
|
6 |
MAX_SEQUENCE_LENGTH = 64
|
7 |
|
|
|
|
|
8 |
def read_files(path, lowercase = False):
|
9 |
with open(path, "r", encoding="utf-8") as f:
|
10 |
dataset_split = f.read().split("\n")[:-1]
|
train.py
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
import keras_nlp
|
3 |
import keras
|
4 |
import tensorflow.data as tf_data
|
5 |
-
import pickle
|
6 |
from tensorflow.keras.optimizers import Adam
|
7 |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
8 |
import datetime
|
@@ -13,7 +12,6 @@ EPOCHS = 20
|
|
13 |
EMBED_DIM = 256
|
14 |
INTERMEDIATE_DIM = 2048
|
15 |
NUM_HEADS = 8
|
16 |
-
# TODO probably change dynamically
|
17 |
MAX_SEQUENCE_LENGTH = 128
|
18 |
EN_VOCAB_SIZE = 30000
|
19 |
CS_VOCAB_SIZE = 30000
|
|
|
2 |
import keras_nlp
|
3 |
import keras
|
4 |
import tensorflow.data as tf_data
|
|
|
5 |
from tensorflow.keras.optimizers import Adam
|
6 |
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
7 |
import datetime
|
|
|
12 |
EMBED_DIM = 256
|
13 |
INTERMEDIATE_DIM = 2048
|
14 |
NUM_HEADS = 8
|
|
|
15 |
MAX_SEQUENCE_LENGTH = 128
|
16 |
EN_VOCAB_SIZE = 30000
|
17 |
CS_VOCAB_SIZE = 30000
|
train_tokenizers.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import keras_nlp
|
2 |
-
import keras
|
3 |
import tensorflow.data as tf_data
|
4 |
-
import pickle
|
5 |
-
import random
|
6 |
|
7 |
EN_VOCAB_SIZE = 30000
|
8 |
CS_VOCAB_SIZE = 30000
|
@@ -20,27 +17,12 @@ def train_word_piece(text_samples, vocab_size, reserved_tokens, save_output_path
|
|
20 |
def read_files(path):
|
21 |
with open(path, "r", encoding="utf-8") as f:
|
22 |
dataset_split = f.read().split("\n")[:-1]
|
23 |
-
#to lowercase, idk why
|
24 |
dataset_split = [line.lower() for line in dataset_split]
|
25 |
return dataset_split
|
26 |
|
27 |
-
#OPUS cs-en
|
28 |
-
# train_cs = read_files('datasets/cs-en/opus.cs-en-train.cs')
|
29 |
-
# train_en = read_files('datasets/cs-en/opus.cs-en-train.en')
|
30 |
-
|
31 |
-
|
32 |
-
#EUROPARL cs-en
|
33 |
train_cs = read_files('datasets/europarl/train-cs-en.cs')
|
34 |
train_en = read_files('datasets/europarl/train-cs-en.en')
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
print(train_cs[0])
|
39 |
-
print(train_en[0])
|
40 |
-
|
41 |
-
|
42 |
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
|
43 |
-
|
44 |
en_vocab = train_word_piece(train_en, EN_VOCAB_SIZE, reserved_tokens, "tokenizers/en_europarl_vocab")
|
45 |
cs_vocab = train_word_piece(train_cs, CS_VOCAB_SIZE, reserved_tokens, "tokenizers/cs_europarl_vocab")
|
46 |
|
|
|
1 |
import keras_nlp
|
|
|
2 |
import tensorflow.data as tf_data
|
|
|
|
|
3 |
|
4 |
EN_VOCAB_SIZE = 30000
|
5 |
CS_VOCAB_SIZE = 30000
|
|
|
17 |
def read_files(path):
|
18 |
with open(path, "r", encoding="utf-8") as f:
|
19 |
dataset_split = f.read().split("\n")[:-1]
|
|
|
20 |
dataset_split = [line.lower() for line in dataset_split]
|
21 |
return dataset_split
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
train_cs = read_files('datasets/europarl/train-cs-en.cs')
|
24 |
train_en = read_files('datasets/europarl/train-cs-en.en')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
reserved_tokens = ["[PAD]", "[UNK]", "[START]", "[END]"]
|
|
|
26 |
en_vocab = train_word_piece(train_en, EN_VOCAB_SIZE, reserved_tokens, "tokenizers/en_europarl_vocab")
|
27 |
cs_vocab = train_word_piece(train_cs, CS_VOCAB_SIZE, reserved_tokens, "tokenizers/cs_europarl_vocab")
|
28 |
|