|
{ |
|
"results": { |
|
"openaimmlu": { |
|
"acc,none": 0.7025352513886911, |
|
"acc_stderr,none": 0.0037280323038272477, |
|
"alias": "openaimmlu" |
|
}, |
|
"openaimmlu_STEM": { |
|
"acc,none": 0.6384105960264901, |
|
"acc_stderr,none": 0.00845271816368979, |
|
"alias": " - STEM" |
|
}, |
|
"openaimmlu_abstract_algebra": { |
|
"alias": " - abstract_algebra", |
|
"acc,none": 0.41, |
|
"acc_stderr,none": 0.049431107042371025 |
|
}, |
|
"openaimmlu_astronomy": { |
|
"alias": " - astronomy", |
|
"acc,none": 0.7960526315789473, |
|
"acc_stderr,none": 0.0327900040631005 |
|
}, |
|
"openaimmlu_college_biology": { |
|
"alias": " - college_biology", |
|
"acc,none": 0.7916666666666666, |
|
"acc_stderr,none": 0.03396116205845334 |
|
}, |
|
"openaimmlu_college_chemistry": { |
|
"alias": " - college_chemistry", |
|
"acc,none": 0.52, |
|
"acc_stderr,none": 0.050211673156867795 |
|
}, |
|
"openaimmlu_college_computer_science": { |
|
"alias": " - college_computer_science", |
|
"acc,none": 0.57, |
|
"acc_stderr,none": 0.04975698519562428 |
|
}, |
|
"openaimmlu_college_mathematics": { |
|
"alias": " - college_mathematics", |
|
"acc,none": 0.41, |
|
"acc_stderr,none": 0.049431107042371025 |
|
}, |
|
"openaimmlu_college_physics": { |
|
"alias": " - college_physics", |
|
"acc,none": 0.5686274509803921, |
|
"acc_stderr,none": 0.04928099597287533 |
|
}, |
|
"openaimmlu_computer_security": { |
|
"alias": " - computer_security", |
|
"acc,none": 0.77, |
|
"acc_stderr,none": 0.042295258468165044 |
|
}, |
|
"openaimmlu_conceptual_physics": { |
|
"alias": " - conceptual_physics", |
|
"acc,none": 0.7531914893617021, |
|
"acc_stderr,none": 0.028185441301234106 |
|
}, |
|
"openaimmlu_econometrics": { |
|
"alias": " - econometrics", |
|
"acc,none": 0.6052631578947368, |
|
"acc_stderr,none": 0.045981880578165414 |
|
}, |
|
"openaimmlu_electrical_engineering": { |
|
"alias": " - electrical_engineering", |
|
"acc,none": 0.6413793103448275, |
|
"acc_stderr,none": 0.039966295748767186 |
|
}, |
|
"openaimmlu_elementary_mathematics": { |
|
"alias": " - elementary_mathematics", |
|
"acc,none": 0.5740740740740741, |
|
"acc_stderr,none": 0.02546714904546955 |
|
}, |
|
"openaimmlu_high_school_biology": { |
|
"alias": " - high_school_biology", |
|
"acc,none": 0.8096774193548387, |
|
"acc_stderr,none": 0.022331707611823085 |
|
}, |
|
"openaimmlu_high_school_chemistry": { |
|
"alias": " - high_school_chemistry", |
|
"acc,none": 0.645320197044335, |
|
"acc_stderr,none": 0.033661244890514495 |
|
}, |
|
"openaimmlu_high_school_computer_science": { |
|
"alias": " - high_school_computer_science", |
|
"acc,none": 0.8, |
|
"acc_stderr,none": 0.04020151261036844 |
|
}, |
|
"openaimmlu_high_school_mathematics": { |
|
"alias": " - high_school_mathematics", |
|
"acc,none": 0.44814814814814813, |
|
"acc_stderr,none": 0.030321167196316282 |
|
}, |
|
"openaimmlu_high_school_physics": { |
|
"alias": " - high_school_physics", |
|
"acc,none": 0.5496688741721855, |
|
"acc_stderr,none": 0.04062290018683775 |
|
}, |
|
"openaimmlu_high_school_statistics": { |
|
"alias": " - high_school_statistics", |
|
"acc,none": 0.6712962962962963, |
|
"acc_stderr,none": 0.032036140846700596 |
|
}, |
|
"openaimmlu_humanities": { |
|
"acc,none": 0.8015521064301552, |
|
"acc_stderr,none": 0.009312893863787008, |
|
"alias": " - Humanities" |
|
}, |
|
"openaimmlu_high_school_european_history": { |
|
"alias": " - high_school_european_history", |
|
"acc,none": 0.8242424242424242, |
|
"acc_stderr,none": 0.02972094300622445 |
|
}, |
|
"openaimmlu_high_school_us_history": { |
|
"alias": " - high_school_us_history", |
|
"acc,none": 0.8970588235294118, |
|
"acc_stderr,none": 0.02132833757080437 |
|
}, |
|
"openaimmlu_high_school_world_history": { |
|
"alias": " - high_school_world_history", |
|
"acc,none": 0.8818565400843882, |
|
"acc_stderr,none": 0.021011052659878453 |
|
}, |
|
"openaimmlu_international_law": { |
|
"alias": " - international_law", |
|
"acc,none": 0.8512396694214877, |
|
"acc_stderr,none": 0.03248470083807196 |
|
}, |
|
"openaimmlu_jurisprudence": { |
|
"alias": " - jurisprudence", |
|
"acc,none": 0.75, |
|
"acc_stderr,none": 0.04186091791394607 |
|
}, |
|
"openaimmlu_logical_fallacies": { |
|
"alias": " - logical_fallacies", |
|
"acc,none": 0.7300613496932515, |
|
"acc_stderr,none": 0.03487825168497892 |
|
}, |
|
"openaimmlu_philosophy": { |
|
"alias": " - philosophy", |
|
"acc,none": 0.7588424437299035, |
|
"acc_stderr,none": 0.024296594034763426 |
|
}, |
|
"openaimmlu_prehistory": { |
|
"alias": " - prehistory", |
|
"acc,none": 0.7623456790123457, |
|
"acc_stderr,none": 0.023683591837008557 |
|
}, |
|
"openaimmlu_world_religions": { |
|
"alias": " - world_religions", |
|
"acc,none": 0.7719298245614035, |
|
"acc_stderr,none": 0.03218093795602357 |
|
}, |
|
"openaimmlu_other": { |
|
"acc,none": 0.6803776129467296, |
|
"acc_stderr,none": 0.0058476578206321, |
|
"alias": " - Other" |
|
}, |
|
"openaimmlu_anatomy": { |
|
"alias": " - anatomy", |
|
"acc,none": 0.6222222222222222, |
|
"acc_stderr,none": 0.04188307537595853 |
|
}, |
|
"openaimmlu_clinical_knowledge": { |
|
"alias": " - clinical_knowledge", |
|
"acc,none": 0.7132075471698113, |
|
"acc_stderr,none": 0.02783491252754407 |
|
}, |
|
"openaimmlu_college_medicine": { |
|
"alias": " - college_medicine", |
|
"acc,none": 0.6416184971098265, |
|
"acc_stderr,none": 0.03656343653353158 |
|
}, |
|
"openaimmlu_formal_logic": { |
|
"alias": " - formal_logic", |
|
"acc,none": 0.5317460317460317, |
|
"acc_stderr,none": 0.04463112720677172 |
|
}, |
|
"openaimmlu_global_facts": { |
|
"alias": " - global_facts", |
|
"acc,none": 0.5, |
|
"acc_stderr,none": 0.050251890762960605 |
|
}, |
|
"openaimmlu_high_school_geography": { |
|
"alias": " - high_school_geography", |
|
"acc,none": 0.8232323232323232, |
|
"acc_stderr,none": 0.027178752639044915 |
|
}, |
|
"openaimmlu_high_school_psychology": { |
|
"alias": " - high_school_psychology", |
|
"acc,none": 0.8293577981651377, |
|
"acc_stderr,none": 0.016129271025099853 |
|
}, |
|
"openaimmlu_human_aging": { |
|
"alias": " - human_aging", |
|
"acc,none": 0.7668161434977578, |
|
"acc_stderr,none": 0.028380391147094713 |
|
}, |
|
"openaimmlu_machine_learning": { |
|
"alias": " - machine_learning", |
|
"acc,none": 0.5625, |
|
"acc_stderr,none": 0.04708567521880525 |
|
}, |
|
"openaimmlu_medical_genetics": { |
|
"alias": " - medical_genetics", |
|
"acc,none": 0.85, |
|
"acc_stderr,none": 0.0358870281282637 |
|
}, |
|
"openaimmlu_miscellaneous": { |
|
"alias": " - miscellaneous", |
|
"acc,none": 0.822477650063857, |
|
"acc_stderr,none": 0.013664230995834838 |
|
}, |
|
"openaimmlu_nutrition": { |
|
"alias": " - nutrition", |
|
"acc,none": 0.761437908496732, |
|
"acc_stderr,none": 0.024404394928087866 |
|
}, |
|
"openaimmlu_professional_accounting": { |
|
"alias": " - professional_accounting", |
|
"acc,none": 0.5319148936170213, |
|
"acc_stderr,none": 0.029766675075873866 |
|
}, |
|
"openaimmlu_professional_law": { |
|
"alias": " - professional_law", |
|
"acc,none": 0.5475880052151239, |
|
"acc_stderr,none": 0.012712265105889136 |
|
}, |
|
"openaimmlu_professional_medicine": { |
|
"alias": " - professional_medicine", |
|
"acc,none": 0.7794117647058824, |
|
"acc_stderr,none": 0.02518778666022727 |
|
}, |
|
"openaimmlu_professional_psychology": { |
|
"alias": " - professional_psychology", |
|
"acc,none": 0.7205882352941176, |
|
"acc_stderr,none": 0.018152871051538816 |
|
}, |
|
"openaimmlu_virology": { |
|
"alias": " - virology", |
|
"acc,none": 0.4879518072289157, |
|
"acc_stderr,none": 0.0389136449583582 |
|
}, |
|
"openaimmlu_social_science": { |
|
"acc,none": 0.7471089470480827, |
|
"acc_stderr,none": 0.0074744908927775675, |
|
"alias": " - Social Science" |
|
}, |
|
"openaimmlu_business_ethics": { |
|
"alias": " - business_ethics", |
|
"acc,none": 0.72, |
|
"acc_stderr,none": 0.04512608598542128 |
|
}, |
|
"openaimmlu_high_school_government_and_politics": { |
|
"alias": " - high_school_government_and_politics", |
|
"acc,none": 0.9067357512953368, |
|
"acc_stderr,none": 0.02098685459328973 |
|
}, |
|
"openaimmlu_high_school_macroeconomics": { |
|
"alias": " - high_school_macroeconomics", |
|
"acc,none": 0.7487179487179487, |
|
"acc_stderr,none": 0.021992016662370575 |
|
}, |
|
"openaimmlu_high_school_microeconomics": { |
|
"alias": " - high_school_microeconomics", |
|
"acc,none": 0.7983193277310925, |
|
"acc_stderr,none": 0.02606431340630453 |
|
}, |
|
"openaimmlu_human_sexuality": { |
|
"alias": " - human_sexuality", |
|
"acc,none": 0.7786259541984732, |
|
"acc_stderr,none": 0.03641297081313729 |
|
}, |
|
"openaimmlu_management": { |
|
"alias": " - management", |
|
"acc,none": 0.8058252427184466, |
|
"acc_stderr,none": 0.03916667762822582 |
|
}, |
|
"openaimmlu_marketing": { |
|
"alias": " - marketing", |
|
"acc,none": 0.8675213675213675, |
|
"acc_stderr,none": 0.022209309073165612 |
|
}, |
|
"openaimmlu_moral_disputes": { |
|
"alias": " - moral_disputes", |
|
"acc,none": 0.6907514450867052, |
|
"acc_stderr,none": 0.024883140570071755 |
|
}, |
|
"openaimmlu_moral_scenarios": { |
|
"alias": " - moral_scenarios", |
|
"acc,none": 0.6681564245810055, |
|
"acc_stderr,none": 0.015748421208187306 |
|
}, |
|
"openaimmlu_public_relations": { |
|
"alias": " - public_relations", |
|
"acc,none": 0.6272727272727273, |
|
"acc_stderr,none": 0.04631381319425465 |
|
}, |
|
"openaimmlu_security_studies": { |
|
"alias": " - security_studies", |
|
"acc,none": 0.7428571428571429, |
|
"acc_stderr,none": 0.027979823538744546 |
|
}, |
|
"openaimmlu_sociology": { |
|
"alias": " - sociology", |
|
"acc,none": 0.8159203980099502, |
|
"acc_stderr,none": 0.027403859410786848 |
|
}, |
|
"openaimmlu_us_foreign_policy": { |
|
"alias": " - us_foreign_policy", |
|
"acc,none": 0.86, |
|
"acc_stderr,none": 0.03487350880197771 |
|
} |
|
}, |
|
"groups": { |
|
"openaimmlu": { |
|
"acc,none": 0.7025352513886911, |
|
"acc_stderr,none": 0.0037280323038272477, |
|
"alias": "openaimmlu" |
|
}, |
|
"openaimmlu_STEM": { |
|
"acc,none": 0.6384105960264901, |
|
"acc_stderr,none": 0.00845271816368979, |
|
"alias": " - STEM" |
|
}, |
|
"openaimmlu_humanities": { |
|
"acc,none": 0.8015521064301552, |
|
"acc_stderr,none": 0.009312893863787008, |
|
"alias": " - Humanities" |
|
}, |
|
"openaimmlu_other": { |
|
"acc,none": 0.6803776129467296, |
|
"acc_stderr,none": 0.0058476578206321, |
|
"alias": " - Other" |
|
}, |
|
"openaimmlu_social_science": { |
|
"acc,none": 0.7471089470480827, |
|
"acc_stderr,none": 0.0074744908927775675, |
|
"alias": " - Social Science" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"openaimmlu_humanities": [ |
|
"openaimmlu_high_school_us_history", |
|
"openaimmlu_logical_fallacies", |
|
"openaimmlu_prehistory", |
|
"openaimmlu_high_school_world_history", |
|
"openaimmlu_high_school_european_history", |
|
"openaimmlu_international_law", |
|
"openaimmlu_jurisprudence", |
|
"openaimmlu_philosophy", |
|
"openaimmlu_world_religions" |
|
], |
|
"openaimmlu_social_science": [ |
|
"openaimmlu_management", |
|
"openaimmlu_high_school_government_and_politics", |
|
"openaimmlu_public_relations", |
|
"openaimmlu_sociology", |
|
"openaimmlu_us_foreign_policy", |
|
"openaimmlu_security_studies", |
|
"openaimmlu_marketing", |
|
"openaimmlu_high_school_macroeconomics", |
|
"openaimmlu_moral_scenarios", |
|
"openaimmlu_human_sexuality", |
|
"openaimmlu_business_ethics", |
|
"openaimmlu_moral_disputes", |
|
"openaimmlu_high_school_microeconomics" |
|
], |
|
"openaimmlu_other": [ |
|
"openaimmlu_professional_psychology", |
|
"openaimmlu_anatomy", |
|
"openaimmlu_human_aging", |
|
"openaimmlu_global_facts", |
|
"openaimmlu_formal_logic", |
|
"openaimmlu_clinical_knowledge", |
|
"openaimmlu_professional_medicine", |
|
"openaimmlu_miscellaneous", |
|
"openaimmlu_virology", |
|
"openaimmlu_high_school_geography", |
|
"openaimmlu_college_medicine", |
|
"openaimmlu_machine_learning", |
|
"openaimmlu_professional_law", |
|
"openaimmlu_medical_genetics", |
|
"openaimmlu_nutrition", |
|
"openaimmlu_professional_accounting", |
|
"openaimmlu_high_school_psychology" |
|
], |
|
"openaimmlu_STEM": [ |
|
"openaimmlu_conceptual_physics", |
|
"openaimmlu_electrical_engineering", |
|
"openaimmlu_high_school_physics", |
|
"openaimmlu_econometrics", |
|
"openaimmlu_college_physics", |
|
"openaimmlu_college_mathematics", |
|
"openaimmlu_computer_security", |
|
"openaimmlu_high_school_chemistry", |
|
"openaimmlu_astronomy", |
|
"openaimmlu_abstract_algebra", |
|
"openaimmlu_high_school_biology", |
|
"openaimmlu_college_biology", |
|
"openaimmlu_elementary_mathematics", |
|
"openaimmlu_college_computer_science", |
|
"openaimmlu_high_school_mathematics", |
|
"openaimmlu_high_school_statistics", |
|
"openaimmlu_college_chemistry", |
|
"openaimmlu_high_school_computer_science" |
|
], |
|
"openaimmlu": [ |
|
"openaimmlu_STEM", |
|
"openaimmlu_other", |
|
"openaimmlu_social_science", |
|
"openaimmlu_humanities" |
|
] |
|
}, |
|
"configs": { |
|
"openaimmlu_abstract_algebra": { |
|
"task": "openaimmlu_abstract_algebra", |
|
"task_alias": "abstract_algebra", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "abstract_algebra", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_anatomy": { |
|
"task": "openaimmlu_anatomy", |
|
"task_alias": "anatomy", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "anatomy", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_astronomy": { |
|
"task": "openaimmlu_astronomy", |
|
"task_alias": "astronomy", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "astronomy", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_business_ethics": { |
|
"task": "openaimmlu_business_ethics", |
|
"task_alias": "business_ethics", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "business_ethics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_clinical_knowledge": { |
|
"task": "openaimmlu_clinical_knowledge", |
|
"task_alias": "clinical_knowledge", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "clinical_knowledge", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_biology": { |
|
"task": "openaimmlu_college_biology", |
|
"task_alias": "college_biology", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_biology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_chemistry": { |
|
"task": "openaimmlu_college_chemistry", |
|
"task_alias": "college_chemistry", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_chemistry", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_computer_science": { |
|
"task": "openaimmlu_college_computer_science", |
|
"task_alias": "college_computer_science", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_computer_science", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_mathematics": { |
|
"task": "openaimmlu_college_mathematics", |
|
"task_alias": "college_mathematics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_mathematics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_medicine": { |
|
"task": "openaimmlu_college_medicine", |
|
"task_alias": "college_medicine", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_medicine", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_college_physics": { |
|
"task": "openaimmlu_college_physics", |
|
"task_alias": "college_physics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "college_physics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_computer_security": { |
|
"task": "openaimmlu_computer_security", |
|
"task_alias": "computer_security", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "computer_security", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_conceptual_physics": { |
|
"task": "openaimmlu_conceptual_physics", |
|
"task_alias": "conceptual_physics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "conceptual_physics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_econometrics": { |
|
"task": "openaimmlu_econometrics", |
|
"task_alias": "econometrics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "econometrics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_electrical_engineering": { |
|
"task": "openaimmlu_electrical_engineering", |
|
"task_alias": "electrical_engineering", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "electrical_engineering", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_elementary_mathematics": { |
|
"task": "openaimmlu_elementary_mathematics", |
|
"task_alias": "elementary_mathematics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "elementary_mathematics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_formal_logic": { |
|
"task": "openaimmlu_formal_logic", |
|
"task_alias": "formal_logic", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "formal_logic", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_global_facts": { |
|
"task": "openaimmlu_global_facts", |
|
"task_alias": "global_facts", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "global_facts", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_biology": { |
|
"task": "openaimmlu_high_school_biology", |
|
"task_alias": "high_school_biology", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_biology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_chemistry": { |
|
"task": "openaimmlu_high_school_chemistry", |
|
"task_alias": "high_school_chemistry", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_chemistry", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_computer_science": { |
|
"task": "openaimmlu_high_school_computer_science", |
|
"task_alias": "high_school_computer_science", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_computer_science", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_european_history": { |
|
"task": "openaimmlu_high_school_european_history", |
|
"task_alias": "high_school_european_history", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_european_history", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_geography": { |
|
"task": "openaimmlu_high_school_geography", |
|
"task_alias": "high_school_geography", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_geography", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_government_and_politics": { |
|
"task": "openaimmlu_high_school_government_and_politics", |
|
"task_alias": "high_school_government_and_politics", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_government_and_politics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_macroeconomics": { |
|
"task": "openaimmlu_high_school_macroeconomics", |
|
"task_alias": "high_school_macroeconomics", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_macroeconomics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_mathematics": { |
|
"task": "openaimmlu_high_school_mathematics", |
|
"task_alias": "high_school_mathematics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_mathematics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_microeconomics": { |
|
"task": "openaimmlu_high_school_microeconomics", |
|
"task_alias": "high_school_microeconomics", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_microeconomics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_physics": { |
|
"task": "openaimmlu_high_school_physics", |
|
"task_alias": "high_school_physics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_physics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_psychology": { |
|
"task": "openaimmlu_high_school_psychology", |
|
"task_alias": "high_school_psychology", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_psychology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_statistics": { |
|
"task": "openaimmlu_high_school_statistics", |
|
"task_alias": "high_school_statistics", |
|
"tag": "openaimmlu_STEM_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_statistics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_us_history": { |
|
"task": "openaimmlu_high_school_us_history", |
|
"task_alias": "high_school_us_history", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_us_history", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_high_school_world_history": { |
|
"task": "openaimmlu_high_school_world_history", |
|
"task_alias": "high_school_world_history", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "high_school_world_history", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_human_aging": { |
|
"task": "openaimmlu_human_aging", |
|
"task_alias": "human_aging", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "human_aging", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_human_sexuality": { |
|
"task": "openaimmlu_human_sexuality", |
|
"task_alias": "human_sexuality", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "human_sexuality", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_international_law": { |
|
"task": "openaimmlu_international_law", |
|
"task_alias": "international_law", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "international_law", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_jurisprudence": { |
|
"task": "openaimmlu_jurisprudence", |
|
"task_alias": "jurisprudence", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "jurisprudence", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_logical_fallacies": { |
|
"task": "openaimmlu_logical_fallacies", |
|
"task_alias": "logical_fallacies", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "logical_fallacies", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_machine_learning": { |
|
"task": "openaimmlu_machine_learning", |
|
"task_alias": "machine_learning", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "machine_learning", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_management": { |
|
"task": "openaimmlu_management", |
|
"task_alias": "management", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "management", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_marketing": { |
|
"task": "openaimmlu_marketing", |
|
"task_alias": "marketing", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "marketing", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_medical_genetics": { |
|
"task": "openaimmlu_medical_genetics", |
|
"task_alias": "medical_genetics", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "medical_genetics", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_miscellaneous": { |
|
"task": "openaimmlu_miscellaneous", |
|
"task_alias": "miscellaneous", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "miscellaneous", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_moral_disputes": { |
|
"task": "openaimmlu_moral_disputes", |
|
"task_alias": "moral_disputes", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "moral_disputes", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_moral_scenarios": { |
|
"task": "openaimmlu_moral_scenarios", |
|
"task_alias": "moral_scenarios", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "moral_scenarios", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_nutrition": { |
|
"task": "openaimmlu_nutrition", |
|
"task_alias": "nutrition", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "nutrition", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_philosophy": { |
|
"task": "openaimmlu_philosophy", |
|
"task_alias": "philosophy", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "philosophy", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_prehistory": { |
|
"task": "openaimmlu_prehistory", |
|
"task_alias": "prehistory", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "prehistory", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_professional_accounting": { |
|
"task": "openaimmlu_professional_accounting", |
|
"task_alias": "professional_accounting", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "professional_accounting", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_professional_law": { |
|
"task": "openaimmlu_professional_law", |
|
"task_alias": "professional_law", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "professional_law", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_professional_medicine": { |
|
"task": "openaimmlu_professional_medicine", |
|
"task_alias": "professional_medicine", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "professional_medicine", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_professional_psychology": { |
|
"task": "openaimmlu_professional_psychology", |
|
"task_alias": "professional_psychology", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "professional_psychology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_public_relations": { |
|
"task": "openaimmlu_public_relations", |
|
"task_alias": "public_relations", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "public_relations", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_security_studies": { |
|
"task": "openaimmlu_security_studies", |
|
"task_alias": "security_studies", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "security_studies", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_sociology": { |
|
"task": "openaimmlu_sociology", |
|
"task_alias": "sociology", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "sociology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_us_foreign_policy": { |
|
"task": "openaimmlu_us_foreign_policy", |
|
"task_alias": "us_foreign_policy", |
|
"tag": "openaimmlu_social_science_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "us_foreign_policy", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_virology": { |
|
"task": "openaimmlu_virology", |
|
"task_alias": "virology", |
|
"tag": "openaimmlu_other_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "virology", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"openaimmlu_world_religions": { |
|
"task": "openaimmlu_world_religions", |
|
"task_alias": "world_religions", |
|
"tag": "openaimmlu_humanities_tasks", |
|
"dataset_path": "khalidalt/openai_mmlu_arabic", |
|
"dataset_name": "world_religions", |
|
"test_split": "test", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_docs(doc):\n\n def format_example(doc, choices):\n options = []\n for _, choice in enumerate(choices):\n options.append(f'{en2ar[choice]}. {doc[choice]}')\n\n ar_subject = SUBJECTS[doc['Subject']]\n query = PROMPT.format(ar_subject, #doc['Subject'],\n doc['Question'],\n \"\\n\".join(options))\n return query\n\n keys_en = [\"A\", \"B\", \"C\", \"D\"]\n keys_ar = ['\u0623', '\u0628', '\u062c', '\u062f']\n ar_label = en2ar[doc['Answer']]\n\n out_doc = {\n \"query\": format_example(doc, keys_en),\n \"choices\": keys_ar,\n \"gold\": keys_ar.index(ar_label)\n }\n\n return out_doc\n\n return dataset.map(_process_docs) \n", |
|
"doc_to_text": "query", |
|
"doc_to_target": "gold", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"openaimmlu": 0, |
|
"openaimmlu_STEM": 0, |
|
"openaimmlu_abstract_algebra": 0.0, |
|
"openaimmlu_anatomy": 0.0, |
|
"openaimmlu_astronomy": 0.0, |
|
"openaimmlu_business_ethics": 0.0, |
|
"openaimmlu_clinical_knowledge": 0.0, |
|
"openaimmlu_college_biology": 0.0, |
|
"openaimmlu_college_chemistry": 0.0, |
|
"openaimmlu_college_computer_science": 0.0, |
|
"openaimmlu_college_mathematics": 0.0, |
|
"openaimmlu_college_medicine": 0.0, |
|
"openaimmlu_college_physics": 0.0, |
|
"openaimmlu_computer_security": 0.0, |
|
"openaimmlu_conceptual_physics": 0.0, |
|
"openaimmlu_econometrics": 0.0, |
|
"openaimmlu_electrical_engineering": 0.0, |
|
"openaimmlu_elementary_mathematics": 0.0, |
|
"openaimmlu_formal_logic": 0.0, |
|
"openaimmlu_global_facts": 0.0, |
|
"openaimmlu_high_school_biology": 0.0, |
|
"openaimmlu_high_school_chemistry": 0.0, |
|
"openaimmlu_high_school_computer_science": 0.0, |
|
"openaimmlu_high_school_european_history": 0.0, |
|
"openaimmlu_high_school_geography": 0.0, |
|
"openaimmlu_high_school_government_and_politics": 0.0, |
|
"openaimmlu_high_school_macroeconomics": 0.0, |
|
"openaimmlu_high_school_mathematics": 0.0, |
|
"openaimmlu_high_school_microeconomics": 0.0, |
|
"openaimmlu_high_school_physics": 0.0, |
|
"openaimmlu_high_school_psychology": 0.0, |
|
"openaimmlu_high_school_statistics": 0.0, |
|
"openaimmlu_high_school_us_history": 0.0, |
|
"openaimmlu_high_school_world_history": 0.0, |
|
"openaimmlu_human_aging": 0.0, |
|
"openaimmlu_human_sexuality": 0.0, |
|
"openaimmlu_humanities": 0, |
|
"openaimmlu_international_law": 0.0, |
|
"openaimmlu_jurisprudence": 0.0, |
|
"openaimmlu_logical_fallacies": 0.0, |
|
"openaimmlu_machine_learning": 0.0, |
|
"openaimmlu_management": 0.0, |
|
"openaimmlu_marketing": 0.0, |
|
"openaimmlu_medical_genetics": 0.0, |
|
"openaimmlu_miscellaneous": 0.0, |
|
"openaimmlu_moral_disputes": 0.0, |
|
"openaimmlu_moral_scenarios": 0.0, |
|
"openaimmlu_nutrition": 0.0, |
|
"openaimmlu_other": 0, |
|
"openaimmlu_philosophy": 0.0, |
|
"openaimmlu_prehistory": 0.0, |
|
"openaimmlu_professional_accounting": 0.0, |
|
"openaimmlu_professional_law": 0.0, |
|
"openaimmlu_professional_medicine": 0.0, |
|
"openaimmlu_professional_psychology": 0.0, |
|
"openaimmlu_public_relations": 0.0, |
|
"openaimmlu_security_studies": 0.0, |
|
"openaimmlu_social_science": 0, |
|
"openaimmlu_sociology": 0.0, |
|
"openaimmlu_us_foreign_policy": 0.0, |
|
"openaimmlu_virology": 0.0, |
|
"openaimmlu_world_religions": 0.0 |
|
}, |
|
"n-shot": { |
|
"openaimmlu_abstract_algebra": 0, |
|
"openaimmlu_anatomy": 0, |
|
"openaimmlu_astronomy": 0, |
|
"openaimmlu_business_ethics": 0, |
|
"openaimmlu_clinical_knowledge": 0, |
|
"openaimmlu_college_biology": 0, |
|
"openaimmlu_college_chemistry": 0, |
|
"openaimmlu_college_computer_science": 0, |
|
"openaimmlu_college_mathematics": 0, |
|
"openaimmlu_college_medicine": 0, |
|
"openaimmlu_college_physics": 0, |
|
"openaimmlu_computer_security": 0, |
|
"openaimmlu_conceptual_physics": 0, |
|
"openaimmlu_econometrics": 0, |
|
"openaimmlu_electrical_engineering": 0, |
|
"openaimmlu_elementary_mathematics": 0, |
|
"openaimmlu_formal_logic": 0, |
|
"openaimmlu_global_facts": 0, |
|
"openaimmlu_high_school_biology": 0, |
|
"openaimmlu_high_school_chemistry": 0, |
|
"openaimmlu_high_school_computer_science": 0, |
|
"openaimmlu_high_school_european_history": 0, |
|
"openaimmlu_high_school_geography": 0, |
|
"openaimmlu_high_school_government_and_politics": 0, |
|
"openaimmlu_high_school_macroeconomics": 0, |
|
"openaimmlu_high_school_mathematics": 0, |
|
"openaimmlu_high_school_microeconomics": 0, |
|
"openaimmlu_high_school_physics": 0, |
|
"openaimmlu_high_school_psychology": 0, |
|
"openaimmlu_high_school_statistics": 0, |
|
"openaimmlu_high_school_us_history": 0, |
|
"openaimmlu_high_school_world_history": 0, |
|
"openaimmlu_human_aging": 0, |
|
"openaimmlu_human_sexuality": 0, |
|
"openaimmlu_international_law": 0, |
|
"openaimmlu_jurisprudence": 0, |
|
"openaimmlu_logical_fallacies": 0, |
|
"openaimmlu_machine_learning": 0, |
|
"openaimmlu_management": 0, |
|
"openaimmlu_marketing": 0, |
|
"openaimmlu_medical_genetics": 0, |
|
"openaimmlu_miscellaneous": 0, |
|
"openaimmlu_moral_disputes": 0, |
|
"openaimmlu_moral_scenarios": 0, |
|
"openaimmlu_nutrition": 0, |
|
"openaimmlu_philosophy": 0, |
|
"openaimmlu_prehistory": 0, |
|
"openaimmlu_professional_accounting": 0, |
|
"openaimmlu_professional_law": 0, |
|
"openaimmlu_professional_medicine": 0, |
|
"openaimmlu_professional_psychology": 0, |
|
"openaimmlu_public_relations": 0, |
|
"openaimmlu_security_studies": 0, |
|
"openaimmlu_sociology": 0, |
|
"openaimmlu_us_foreign_policy": 0, |
|
"openaimmlu_virology": 0, |
|
"openaimmlu_world_religions": 0 |
|
}, |
|
"higher_is_better": { |
|
"openaimmlu": { |
|
"acc": true |
|
}, |
|
"openaimmlu_STEM": { |
|
"acc": true |
|
}, |
|
"openaimmlu_abstract_algebra": { |
|
"acc": true |
|
}, |
|
"openaimmlu_anatomy": { |
|
"acc": true |
|
}, |
|
"openaimmlu_astronomy": { |
|
"acc": true |
|
}, |
|
"openaimmlu_business_ethics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_clinical_knowledge": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_biology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_chemistry": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_computer_science": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_mathematics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_medicine": { |
|
"acc": true |
|
}, |
|
"openaimmlu_college_physics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_computer_security": { |
|
"acc": true |
|
}, |
|
"openaimmlu_conceptual_physics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_econometrics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_electrical_engineering": { |
|
"acc": true |
|
}, |
|
"openaimmlu_elementary_mathematics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_formal_logic": { |
|
"acc": true |
|
}, |
|
"openaimmlu_global_facts": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_biology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_chemistry": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_computer_science": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_european_history": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_geography": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_government_and_politics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_macroeconomics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_mathematics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_microeconomics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_physics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_psychology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_statistics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_us_history": { |
|
"acc": true |
|
}, |
|
"openaimmlu_high_school_world_history": { |
|
"acc": true |
|
}, |
|
"openaimmlu_human_aging": { |
|
"acc": true |
|
}, |
|
"openaimmlu_human_sexuality": { |
|
"acc": true |
|
}, |
|
"openaimmlu_humanities": { |
|
"acc": true |
|
}, |
|
"openaimmlu_international_law": { |
|
"acc": true |
|
}, |
|
"openaimmlu_jurisprudence": { |
|
"acc": true |
|
}, |
|
"openaimmlu_logical_fallacies": { |
|
"acc": true |
|
}, |
|
"openaimmlu_machine_learning": { |
|
"acc": true |
|
}, |
|
"openaimmlu_management": { |
|
"acc": true |
|
}, |
|
"openaimmlu_marketing": { |
|
"acc": true |
|
}, |
|
"openaimmlu_medical_genetics": { |
|
"acc": true |
|
}, |
|
"openaimmlu_miscellaneous": { |
|
"acc": true |
|
}, |
|
"openaimmlu_moral_disputes": { |
|
"acc": true |
|
}, |
|
"openaimmlu_moral_scenarios": { |
|
"acc": true |
|
}, |
|
"openaimmlu_nutrition": { |
|
"acc": true |
|
}, |
|
"openaimmlu_other": { |
|
"acc": true |
|
}, |
|
"openaimmlu_philosophy": { |
|
"acc": true |
|
}, |
|
"openaimmlu_prehistory": { |
|
"acc": true |
|
}, |
|
"openaimmlu_professional_accounting": { |
|
"acc": true |
|
}, |
|
"openaimmlu_professional_law": { |
|
"acc": true |
|
}, |
|
"openaimmlu_professional_medicine": { |
|
"acc": true |
|
}, |
|
"openaimmlu_professional_psychology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_public_relations": { |
|
"acc": true |
|
}, |
|
"openaimmlu_security_studies": { |
|
"acc": true |
|
}, |
|
"openaimmlu_social_science": { |
|
"acc": true |
|
}, |
|
"openaimmlu_sociology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_us_foreign_policy": { |
|
"acc": true |
|
}, |
|
"openaimmlu_virology": { |
|
"acc": true |
|
}, |
|
"openaimmlu_world_religions": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"openaimmlu_conceptual_physics": { |
|
"original": 235, |
|
"effective": 235 |
|
}, |
|
"openaimmlu_electrical_engineering": { |
|
"original": 145, |
|
"effective": 145 |
|
}, |
|
"openaimmlu_high_school_physics": { |
|
"original": 151, |
|
"effective": 151 |
|
}, |
|
"openaimmlu_econometrics": { |
|
"original": 114, |
|
"effective": 114 |
|
}, |
|
"openaimmlu_college_physics": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"openaimmlu_college_mathematics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_computer_security": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_high_school_chemistry": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"openaimmlu_astronomy": { |
|
"original": 152, |
|
"effective": 152 |
|
}, |
|
"openaimmlu_abstract_algebra": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_high_school_biology": { |
|
"original": 310, |
|
"effective": 310 |
|
}, |
|
"openaimmlu_college_biology": { |
|
"original": 144, |
|
"effective": 144 |
|
}, |
|
"openaimmlu_elementary_mathematics": { |
|
"original": 378, |
|
"effective": 378 |
|
}, |
|
"openaimmlu_college_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_high_school_mathematics": { |
|
"original": 270, |
|
"effective": 270 |
|
}, |
|
"openaimmlu_high_school_statistics": { |
|
"original": 216, |
|
"effective": 216 |
|
}, |
|
"openaimmlu_college_chemistry": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_high_school_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_professional_psychology": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"openaimmlu_anatomy": { |
|
"original": 135, |
|
"effective": 135 |
|
}, |
|
"openaimmlu_human_aging": { |
|
"original": 223, |
|
"effective": 223 |
|
}, |
|
"openaimmlu_global_facts": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_formal_logic": { |
|
"original": 126, |
|
"effective": 126 |
|
}, |
|
"openaimmlu_clinical_knowledge": { |
|
"original": 265, |
|
"effective": 265 |
|
}, |
|
"openaimmlu_professional_medicine": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"openaimmlu_miscellaneous": { |
|
"original": 783, |
|
"effective": 783 |
|
}, |
|
"openaimmlu_virology": { |
|
"original": 166, |
|
"effective": 166 |
|
}, |
|
"openaimmlu_high_school_geography": { |
|
"original": 198, |
|
"effective": 198 |
|
}, |
|
"openaimmlu_college_medicine": { |
|
"original": 173, |
|
"effective": 173 |
|
}, |
|
"openaimmlu_machine_learning": { |
|
"original": 112, |
|
"effective": 112 |
|
}, |
|
"openaimmlu_professional_law": { |
|
"original": 1534, |
|
"effective": 1534 |
|
}, |
|
"openaimmlu_medical_genetics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_nutrition": { |
|
"original": 306, |
|
"effective": 306 |
|
}, |
|
"openaimmlu_professional_accounting": { |
|
"original": 282, |
|
"effective": 282 |
|
}, |
|
"openaimmlu_high_school_psychology": { |
|
"original": 545, |
|
"effective": 545 |
|
}, |
|
"openaimmlu_management": { |
|
"original": 103, |
|
"effective": 103 |
|
}, |
|
"openaimmlu_high_school_government_and_politics": { |
|
"original": 193, |
|
"effective": 193 |
|
}, |
|
"openaimmlu_public_relations": { |
|
"original": 110, |
|
"effective": 110 |
|
}, |
|
"openaimmlu_sociology": { |
|
"original": 201, |
|
"effective": 201 |
|
}, |
|
"openaimmlu_us_foreign_policy": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_security_studies": { |
|
"original": 245, |
|
"effective": 245 |
|
}, |
|
"openaimmlu_marketing": { |
|
"original": 234, |
|
"effective": 234 |
|
}, |
|
"openaimmlu_high_school_macroeconomics": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"openaimmlu_moral_scenarios": { |
|
"original": 895, |
|
"effective": 895 |
|
}, |
|
"openaimmlu_human_sexuality": { |
|
"original": 131, |
|
"effective": 131 |
|
}, |
|
"openaimmlu_business_ethics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"openaimmlu_moral_disputes": { |
|
"original": 346, |
|
"effective": 346 |
|
}, |
|
"openaimmlu_high_school_microeconomics": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"openaimmlu_high_school_us_history": { |
|
"original": 204, |
|
"effective": 204 |
|
}, |
|
"openaimmlu_logical_fallacies": { |
|
"original": 163, |
|
"effective": 163 |
|
}, |
|
"openaimmlu_prehistory": { |
|
"original": 324, |
|
"effective": 324 |
|
}, |
|
"openaimmlu_high_school_world_history": { |
|
"original": 237, |
|
"effective": 237 |
|
}, |
|
"openaimmlu_high_school_european_history": { |
|
"original": 165, |
|
"effective": 165 |
|
}, |
|
"openaimmlu_international_law": { |
|
"original": 121, |
|
"effective": 121 |
|
}, |
|
"openaimmlu_jurisprudence": { |
|
"original": 108, |
|
"effective": 108 |
|
}, |
|
"openaimmlu_philosophy": { |
|
"original": 311, |
|
"effective": 311 |
|
}, |
|
"openaimmlu_world_religions": { |
|
"original": 171, |
|
"effective": 171 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=meta-llama/Llama-3.3-70B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True", |
|
"model_num_parameters": 70553706496, |
|
"model_dtype": "torch.bfloat16", |
|
"model_revision": "main", |
|
"model_sha": "6f6073b423013f6a7d4d9f39144961bfbfbc386b", |
|
"batch_size": "auto", |
|
"batch_sizes": [ |
|
16 |
|
], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "788a3672", |
|
"date": 1737860280.209131, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.48.1", |
|
"upper_git_hash": "086919bd66f4e15fdcd4b792a7b27a698c1ba091", |
|
"tokenizer_pad_token": [ |
|
"<|finetune_right_pad_id|>", |
|
"128004" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|eot_id|>", |
|
"128009" |
|
], |
|
"tokenizer_bos_token": [ |
|
"<|begin_of_text|>", |
|
"128000" |
|
], |
|
"eot_token_id": 128009, |
|
"max_length": 131072, |
|
"task_hashes": {}, |
|
"model_source": "hf", |
|
"model_name": "meta-llama/Llama-3.3-70B-Instruct", |
|
"model_name_sanitized": "meta-llama__Llama-3.3-70B-Instruct", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 821567.081517706, |
|
"end_time": 822756.147458029, |
|
"total_evaluation_time_seconds": "1189.0659403229365" |
|
} |