|
{ |
|
"results": { |
|
"mmlu": { |
|
"acc,none": 0.6813844181740493, |
|
"acc_stderr,none": 0.0036893340664510663, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"acc,none": 0.5989373007438895, |
|
"acc_stderr,none": 0.006561339743251598, |
|
"alias": " - humanities" |
|
}, |
|
"mmlu_formal_logic": { |
|
"alias": " - formal_logic", |
|
"acc,none": 0.6031746031746031, |
|
"acc_stderr,none": 0.0437588849272706 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"alias": " - high_school_european_history", |
|
"acc,none": 0.8, |
|
"acc_stderr,none": 0.031234752377721175 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"alias": " - high_school_us_history", |
|
"acc,none": 0.8431372549019608, |
|
"acc_stderr,none": 0.025524722324553332 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"alias": " - high_school_world_history", |
|
"acc,none": 0.8565400843881856, |
|
"acc_stderr,none": 0.022818291821017012 |
|
}, |
|
"mmlu_international_law": { |
|
"alias": " - international_law", |
|
"acc,none": 0.8181818181818182, |
|
"acc_stderr,none": 0.03520893951097654 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"alias": " - jurisprudence", |
|
"acc,none": 0.7962962962962963, |
|
"acc_stderr,none": 0.03893542518824849 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"alias": " - logical_fallacies", |
|
"acc,none": 0.7852760736196319, |
|
"acc_stderr,none": 0.032262193772867744 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"alias": " - moral_disputes", |
|
"acc,none": 0.7398843930635838, |
|
"acc_stderr,none": 0.023618678310069363 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"alias": " - moral_scenarios", |
|
"acc,none": 0.2905027932960894, |
|
"acc_stderr,none": 0.015183844307206155 |
|
}, |
|
"mmlu_philosophy": { |
|
"alias": " - philosophy", |
|
"acc,none": 0.7684887459807074, |
|
"acc_stderr,none": 0.023956532766639137 |
|
}, |
|
"mmlu_prehistory": { |
|
"alias": " - prehistory", |
|
"acc,none": 0.7530864197530864, |
|
"acc_stderr,none": 0.023993501709042117 |
|
}, |
|
"mmlu_professional_law": { |
|
"alias": " - professional_law", |
|
"acc,none": 0.5097783572359843, |
|
"acc_stderr,none": 0.012767793787729338 |
|
}, |
|
"mmlu_world_religions": { |
|
"alias": " - world_religions", |
|
"acc,none": 0.8245614035087719, |
|
"acc_stderr,none": 0.02917088550072766 |
|
}, |
|
"mmlu_other": { |
|
"acc,none": 0.7219182491149019, |
|
"acc_stderr,none": 0.007753178518309848, |
|
"alias": " - other" |
|
}, |
|
"mmlu_business_ethics": { |
|
"alias": " - business_ethics", |
|
"acc,none": 0.67, |
|
"acc_stderr,none": 0.04725815626252609 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"alias": " - clinical_knowledge", |
|
"acc,none": 0.7283018867924528, |
|
"acc_stderr,none": 0.027377706624670713 |
|
}, |
|
"mmlu_college_medicine": { |
|
"alias": " - college_medicine", |
|
"acc,none": 0.6473988439306358, |
|
"acc_stderr,none": 0.036430371689585496 |
|
}, |
|
"mmlu_global_facts": { |
|
"alias": " - global_facts", |
|
"acc,none": 0.4, |
|
"acc_stderr,none": 0.049236596391733084 |
|
}, |
|
"mmlu_human_aging": { |
|
"alias": " - human_aging", |
|
"acc,none": 0.7309417040358744, |
|
"acc_stderr,none": 0.02976377940687497 |
|
}, |
|
"mmlu_management": { |
|
"alias": " - management", |
|
"acc,none": 0.8252427184466019, |
|
"acc_stderr,none": 0.037601780060266196 |
|
}, |
|
"mmlu_marketing": { |
|
"alias": " - marketing", |
|
"acc,none": 0.8974358974358975, |
|
"acc_stderr,none": 0.01987565502786744 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"alias": " - medical_genetics", |
|
"acc,none": 0.77, |
|
"acc_stderr,none": 0.04229525846816502 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"alias": " - miscellaneous", |
|
"acc,none": 0.8237547892720306, |
|
"acc_stderr,none": 0.01362555690799346 |
|
}, |
|
"mmlu_nutrition": { |
|
"alias": " - nutrition", |
|
"acc,none": 0.7287581699346405, |
|
"acc_stderr,none": 0.025457756696667864 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"alias": " - professional_accounting", |
|
"acc,none": 0.5354609929078015, |
|
"acc_stderr,none": 0.02975238965742705 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"alias": " - professional_medicine", |
|
"acc,none": 0.7095588235294118, |
|
"acc_stderr,none": 0.02757646862274052 |
|
}, |
|
"mmlu_virology": { |
|
"alias": " - virology", |
|
"acc,none": 0.5060240963855421, |
|
"acc_stderr,none": 0.03892212195333045 |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc,none": 0.785830354241144, |
|
"acc_stderr,none": 0.007242767358068179, |
|
"alias": " - social sciences" |
|
}, |
|
"mmlu_econometrics": { |
|
"alias": " - econometrics", |
|
"acc,none": 0.5964912280701754, |
|
"acc_stderr,none": 0.046151869625837054 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"alias": " - high_school_geography", |
|
"acc,none": 0.8181818181818182, |
|
"acc_stderr,none": 0.0274796030105388 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"alias": " - high_school_government_and_politics", |
|
"acc,none": 0.8911917098445595, |
|
"acc_stderr,none": 0.022473253332768766 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"alias": " - high_school_macroeconomics", |
|
"acc,none": 0.7307692307692307, |
|
"acc_stderr,none": 0.022489389793654824 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"alias": " - high_school_microeconomics", |
|
"acc,none": 0.8865546218487395, |
|
"acc_stderr,none": 0.02060022575020482 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"alias": " - high_school_psychology", |
|
"acc,none": 0.8844036697247707, |
|
"acc_stderr,none": 0.01370874953417264 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"alias": " - human_sexuality", |
|
"acc,none": 0.7633587786259542, |
|
"acc_stderr,none": 0.03727673575596915 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"alias": " - professional_psychology", |
|
"acc,none": 0.7124183006535948, |
|
"acc_stderr,none": 0.018311653053648222 |
|
}, |
|
"mmlu_public_relations": { |
|
"alias": " - public_relations", |
|
"acc,none": 0.6454545454545455, |
|
"acc_stderr,none": 0.04582004841505415 |
|
}, |
|
"mmlu_security_studies": { |
|
"alias": " - security_studies", |
|
"acc,none": 0.7183673469387755, |
|
"acc_stderr,none": 0.02879518557429129 |
|
}, |
|
"mmlu_sociology": { |
|
"alias": " - sociology", |
|
"acc,none": 0.8407960199004975, |
|
"acc_stderr,none": 0.02587064676616914 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"alias": " - us_foreign_policy", |
|
"acc,none": 0.86, |
|
"acc_stderr,none": 0.03487350880197768 |
|
}, |
|
"mmlu_stem": { |
|
"acc,none": 0.6625436092610213, |
|
"acc_stderr,none": 0.008110145398407284, |
|
"alias": " - stem" |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"alias": " - abstract_algebra", |
|
"acc,none": 0.49, |
|
"acc_stderr,none": 0.05024183937956911 |
|
}, |
|
"mmlu_anatomy": { |
|
"alias": " - anatomy", |
|
"acc,none": 0.6222222222222222, |
|
"acc_stderr,none": 0.04188307537595853 |
|
}, |
|
"mmlu_astronomy": { |
|
"alias": " - astronomy", |
|
"acc,none": 0.8026315789473685, |
|
"acc_stderr,none": 0.03238981601699397 |
|
}, |
|
"mmlu_college_biology": { |
|
"alias": " - college_biology", |
|
"acc,none": 0.8402777777777778, |
|
"acc_stderr,none": 0.030635578972093274 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"alias": " - college_chemistry", |
|
"acc,none": 0.54, |
|
"acc_stderr,none": 0.05009082659620333 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"alias": " - college_computer_science", |
|
"acc,none": 0.69, |
|
"acc_stderr,none": 0.04648231987117316 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"alias": " - college_mathematics", |
|
"acc,none": 0.47, |
|
"acc_stderr,none": 0.05016135580465919 |
|
}, |
|
"mmlu_college_physics": { |
|
"alias": " - college_physics", |
|
"acc,none": 0.5196078431372549, |
|
"acc_stderr,none": 0.04971358884367405 |
|
}, |
|
"mmlu_computer_security": { |
|
"alias": " - computer_security", |
|
"acc,none": 0.79, |
|
"acc_stderr,none": 0.040936018074033256 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"alias": " - conceptual_physics", |
|
"acc,none": 0.7617021276595745, |
|
"acc_stderr,none": 0.027851252973889788 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"alias": " - electrical_engineering", |
|
"acc,none": 0.7379310344827587, |
|
"acc_stderr,none": 0.036646663372252565 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"alias": " - elementary_mathematics", |
|
"acc,none": 0.6402116402116402, |
|
"acc_stderr,none": 0.024718075944129274 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"alias": " - high_school_biology", |
|
"acc,none": 0.8419354838709677, |
|
"acc_stderr,none": 0.02075283151187526 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"alias": " - high_school_chemistry", |
|
"acc,none": 0.6206896551724138, |
|
"acc_stderr,none": 0.03413963805906235 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"alias": " - high_school_computer_science", |
|
"acc,none": 0.81, |
|
"acc_stderr,none": 0.03942772444036623 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"alias": " - high_school_mathematics", |
|
"acc,none": 0.4, |
|
"acc_stderr,none": 0.02986960509531691 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"alias": " - high_school_physics", |
|
"acc,none": 0.6423841059602649, |
|
"acc_stderr,none": 0.03913453431177258 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"alias": " - high_school_statistics", |
|
"acc,none": 0.6712962962962963, |
|
"acc_stderr,none": 0.03203614084670058 |
|
}, |
|
"mmlu_machine_learning": { |
|
"alias": " - machine_learning", |
|
"acc,none": 0.5803571428571429, |
|
"acc_stderr,none": 0.046840993210771065 |
|
} |
|
}, |
|
"groups": { |
|
"mmlu": { |
|
"acc,none": 0.6813844181740493, |
|
"acc_stderr,none": 0.0036893340664510663, |
|
"alias": "mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"acc,none": 0.5989373007438895, |
|
"acc_stderr,none": 0.006561339743251598, |
|
"alias": " - humanities" |
|
}, |
|
"mmlu_other": { |
|
"acc,none": 0.7219182491149019, |
|
"acc_stderr,none": 0.007753178518309848, |
|
"alias": " - other" |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc,none": 0.785830354241144, |
|
"acc_stderr,none": 0.007242767358068179, |
|
"alias": " - social sciences" |
|
}, |
|
"mmlu_stem": { |
|
"acc,none": 0.6625436092610213, |
|
"acc_stderr,none": 0.008110145398407284, |
|
"alias": " - stem" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"mmlu_humanities": [ |
|
"mmlu_jurisprudence", |
|
"mmlu_international_law", |
|
"mmlu_moral_scenarios", |
|
"mmlu_philosophy", |
|
"mmlu_high_school_world_history", |
|
"mmlu_formal_logic", |
|
"mmlu_high_school_us_history", |
|
"mmlu_moral_disputes", |
|
"mmlu_logical_fallacies", |
|
"mmlu_high_school_european_history", |
|
"mmlu_world_religions", |
|
"mmlu_prehistory", |
|
"mmlu_professional_law" |
|
], |
|
"mmlu_social_sciences": [ |
|
"mmlu_human_sexuality", |
|
"mmlu_high_school_psychology", |
|
"mmlu_us_foreign_policy", |
|
"mmlu_professional_psychology", |
|
"mmlu_econometrics", |
|
"mmlu_public_relations", |
|
"mmlu_high_school_macroeconomics", |
|
"mmlu_high_school_geography", |
|
"mmlu_sociology", |
|
"mmlu_high_school_government_and_politics", |
|
"mmlu_security_studies", |
|
"mmlu_high_school_microeconomics" |
|
], |
|
"mmlu_other": [ |
|
"mmlu_miscellaneous", |
|
"mmlu_professional_medicine", |
|
"mmlu_marketing", |
|
"mmlu_business_ethics", |
|
"mmlu_clinical_knowledge", |
|
"mmlu_human_aging", |
|
"mmlu_professional_accounting", |
|
"mmlu_medical_genetics", |
|
"mmlu_college_medicine", |
|
"mmlu_virology", |
|
"mmlu_nutrition", |
|
"mmlu_management", |
|
"mmlu_global_facts" |
|
], |
|
"mmlu_stem": [ |
|
"mmlu_elementary_mathematics", |
|
"mmlu_electrical_engineering", |
|
"mmlu_college_mathematics", |
|
"mmlu_machine_learning", |
|
"mmlu_high_school_physics", |
|
"mmlu_high_school_biology", |
|
"mmlu_abstract_algebra", |
|
"mmlu_college_biology", |
|
"mmlu_college_physics", |
|
"mmlu_computer_security", |
|
"mmlu_college_computer_science", |
|
"mmlu_high_school_chemistry", |
|
"mmlu_high_school_computer_science", |
|
"mmlu_conceptual_physics", |
|
"mmlu_high_school_statistics", |
|
"mmlu_college_chemistry", |
|
"mmlu_astronomy", |
|
"mmlu_anatomy", |
|
"mmlu_high_school_mathematics" |
|
], |
|
"mmlu": [ |
|
"mmlu_stem", |
|
"mmlu_other", |
|
"mmlu_social_sciences", |
|
"mmlu_humanities" |
|
] |
|
}, |
|
"configs": { |
|
"mmlu_abstract_algebra": { |
|
"task": "mmlu_abstract_algebra", |
|
"task_alias": "abstract_algebra", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "abstract_algebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_anatomy": { |
|
"task": "mmlu_anatomy", |
|
"task_alias": "anatomy", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "anatomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_astronomy": { |
|
"task": "mmlu_astronomy", |
|
"task_alias": "astronomy", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "astronomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_business_ethics": { |
|
"task": "mmlu_business_ethics", |
|
"task_alias": "business_ethics", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "business_ethics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"task": "mmlu_clinical_knowledge", |
|
"task_alias": "clinical_knowledge", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "clinical_knowledge", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_biology": { |
|
"task": "mmlu_college_biology", |
|
"task_alias": "college_biology", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_chemistry": { |
|
"task": "mmlu_college_chemistry", |
|
"task_alias": "college_chemistry", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_computer_science": { |
|
"task": "mmlu_college_computer_science", |
|
"task_alias": "college_computer_science", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_mathematics": { |
|
"task": "mmlu_college_mathematics", |
|
"task_alias": "college_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_medicine": { |
|
"task": "mmlu_college_medicine", |
|
"task_alias": "college_medicine", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_college_physics": { |
|
"task": "mmlu_college_physics", |
|
"task_alias": "college_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_computer_security": { |
|
"task": "mmlu_computer_security", |
|
"task_alias": "computer_security", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "computer_security", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about computer security.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"task": "mmlu_conceptual_physics", |
|
"task_alias": "conceptual_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "conceptual_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_econometrics": { |
|
"task": "mmlu_econometrics", |
|
"task_alias": "econometrics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "econometrics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"task": "mmlu_electrical_engineering", |
|
"task_alias": "electrical_engineering", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "electrical_engineering", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"task": "mmlu_elementary_mathematics", |
|
"task_alias": "elementary_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "elementary_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_formal_logic": { |
|
"task": "mmlu_formal_logic", |
|
"task_alias": "formal_logic", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "formal_logic", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_global_facts": { |
|
"task": "mmlu_global_facts", |
|
"task_alias": "global_facts", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "global_facts", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about global facts.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_biology": { |
|
"task": "mmlu_high_school_biology", |
|
"task_alias": "high_school_biology", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"task": "mmlu_high_school_chemistry", |
|
"task_alias": "high_school_chemistry", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"task": "mmlu_high_school_computer_science", |
|
"task_alias": "high_school_computer_science", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"task": "mmlu_high_school_european_history", |
|
"task_alias": "high_school_european_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_european_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_geography": { |
|
"task": "mmlu_high_school_geography", |
|
"task_alias": "high_school_geography", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_geography", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"task": "mmlu_high_school_government_and_politics", |
|
"task_alias": "high_school_government_and_politics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_government_and_politics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"task": "mmlu_high_school_macroeconomics", |
|
"task_alias": "high_school_macroeconomics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_macroeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"task": "mmlu_high_school_mathematics", |
|
"task_alias": "high_school_mathematics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"task": "mmlu_high_school_microeconomics", |
|
"task_alias": "high_school_microeconomics", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_microeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_physics": { |
|
"task": "mmlu_high_school_physics", |
|
"task_alias": "high_school_physics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"task": "mmlu_high_school_psychology", |
|
"task_alias": "high_school_psychology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"task": "mmlu_high_school_statistics", |
|
"task_alias": "high_school_statistics", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_statistics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"task": "mmlu_high_school_us_history", |
|
"task_alias": "high_school_us_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_us_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"task": "mmlu_high_school_world_history", |
|
"task_alias": "high_school_world_history", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_world_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_human_aging": { |
|
"task": "mmlu_human_aging", |
|
"task_alias": "human_aging", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_aging", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human aging.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_human_sexuality": { |
|
"task": "mmlu_human_sexuality", |
|
"task_alias": "human_sexuality", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_sexuality", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_international_law": { |
|
"task": "mmlu_international_law", |
|
"task_alias": "international_law", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "international_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about international law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_jurisprudence": { |
|
"task": "mmlu_jurisprudence", |
|
"task_alias": "jurisprudence", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "jurisprudence", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"task": "mmlu_logical_fallacies", |
|
"task_alias": "logical_fallacies", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "logical_fallacies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_machine_learning": { |
|
"task": "mmlu_machine_learning", |
|
"task_alias": "machine_learning", |
|
"tag": "mmlu_stem_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "machine_learning", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_management": { |
|
"task": "mmlu_management", |
|
"task_alias": "management", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "management", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about management.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_marketing": { |
|
"task": "mmlu_marketing", |
|
"task_alias": "marketing", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "marketing", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about marketing.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_medical_genetics": { |
|
"task": "mmlu_medical_genetics", |
|
"task_alias": "medical_genetics", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "medical_genetics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_miscellaneous": { |
|
"task": "mmlu_miscellaneous", |
|
"task_alias": "miscellaneous", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "miscellaneous", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_moral_disputes": { |
|
"task": "mmlu_moral_disputes", |
|
"task_alias": "moral_disputes", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_disputes", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"task": "mmlu_moral_scenarios", |
|
"task_alias": "moral_scenarios", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_scenarios", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_nutrition": { |
|
"task": "mmlu_nutrition", |
|
"task_alias": "nutrition", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "nutrition", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_philosophy": { |
|
"task": "mmlu_philosophy", |
|
"task_alias": "philosophy", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "philosophy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_prehistory": { |
|
"task": "mmlu_prehistory", |
|
"task_alias": "prehistory", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "prehistory", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_accounting": { |
|
"task": "mmlu_professional_accounting", |
|
"task_alias": "professional_accounting", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_accounting", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_law": { |
|
"task": "mmlu_professional_law", |
|
"task_alias": "professional_law", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_medicine": { |
|
"task": "mmlu_professional_medicine", |
|
"task_alias": "professional_medicine", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_professional_psychology": { |
|
"task": "mmlu_professional_psychology", |
|
"task_alias": "professional_psychology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_public_relations": { |
|
"task": "mmlu_public_relations", |
|
"task_alias": "public_relations", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "public_relations", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about public relations.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_security_studies": { |
|
"task": "mmlu_security_studies", |
|
"task_alias": "security_studies", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "security_studies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about security studies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_sociology": { |
|
"task": "mmlu_sociology", |
|
"task_alias": "sociology", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "sociology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about sociology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"task": "mmlu_us_foreign_policy", |
|
"task_alias": "us_foreign_policy", |
|
"tag": "mmlu_social_sciences_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "us_foreign_policy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_virology": { |
|
"task": "mmlu_virology", |
|
"task_alias": "virology", |
|
"tag": "mmlu_other_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "virology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about virology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_world_religions": { |
|
"task": "mmlu_world_religions", |
|
"task_alias": "world_religions", |
|
"tag": "mmlu_humanities_tasks", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "world_religions", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about world religions.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"mmlu": 2, |
|
"mmlu_abstract_algebra": 1.0, |
|
"mmlu_anatomy": 1.0, |
|
"mmlu_astronomy": 1.0, |
|
"mmlu_business_ethics": 1.0, |
|
"mmlu_clinical_knowledge": 1.0, |
|
"mmlu_college_biology": 1.0, |
|
"mmlu_college_chemistry": 1.0, |
|
"mmlu_college_computer_science": 1.0, |
|
"mmlu_college_mathematics": 1.0, |
|
"mmlu_college_medicine": 1.0, |
|
"mmlu_college_physics": 1.0, |
|
"mmlu_computer_security": 1.0, |
|
"mmlu_conceptual_physics": 1.0, |
|
"mmlu_econometrics": 1.0, |
|
"mmlu_electrical_engineering": 1.0, |
|
"mmlu_elementary_mathematics": 1.0, |
|
"mmlu_formal_logic": 1.0, |
|
"mmlu_global_facts": 1.0, |
|
"mmlu_high_school_biology": 1.0, |
|
"mmlu_high_school_chemistry": 1.0, |
|
"mmlu_high_school_computer_science": 1.0, |
|
"mmlu_high_school_european_history": 1.0, |
|
"mmlu_high_school_geography": 1.0, |
|
"mmlu_high_school_government_and_politics": 1.0, |
|
"mmlu_high_school_macroeconomics": 1.0, |
|
"mmlu_high_school_mathematics": 1.0, |
|
"mmlu_high_school_microeconomics": 1.0, |
|
"mmlu_high_school_physics": 1.0, |
|
"mmlu_high_school_psychology": 1.0, |
|
"mmlu_high_school_statistics": 1.0, |
|
"mmlu_high_school_us_history": 1.0, |
|
"mmlu_high_school_world_history": 1.0, |
|
"mmlu_human_aging": 1.0, |
|
"mmlu_human_sexuality": 1.0, |
|
"mmlu_humanities": 2, |
|
"mmlu_international_law": 1.0, |
|
"mmlu_jurisprudence": 1.0, |
|
"mmlu_logical_fallacies": 1.0, |
|
"mmlu_machine_learning": 1.0, |
|
"mmlu_management": 1.0, |
|
"mmlu_marketing": 1.0, |
|
"mmlu_medical_genetics": 1.0, |
|
"mmlu_miscellaneous": 1.0, |
|
"mmlu_moral_disputes": 1.0, |
|
"mmlu_moral_scenarios": 1.0, |
|
"mmlu_nutrition": 1.0, |
|
"mmlu_other": 2, |
|
"mmlu_philosophy": 1.0, |
|
"mmlu_prehistory": 1.0, |
|
"mmlu_professional_accounting": 1.0, |
|
"mmlu_professional_law": 1.0, |
|
"mmlu_professional_medicine": 1.0, |
|
"mmlu_professional_psychology": 1.0, |
|
"mmlu_public_relations": 1.0, |
|
"mmlu_security_studies": 1.0, |
|
"mmlu_social_sciences": 2, |
|
"mmlu_sociology": 1.0, |
|
"mmlu_stem": 2, |
|
"mmlu_us_foreign_policy": 1.0, |
|
"mmlu_virology": 1.0, |
|
"mmlu_world_religions": 1.0 |
|
}, |
|
"n-shot": { |
|
"mmlu_abstract_algebra": 0, |
|
"mmlu_anatomy": 0, |
|
"mmlu_astronomy": 0, |
|
"mmlu_business_ethics": 0, |
|
"mmlu_clinical_knowledge": 0, |
|
"mmlu_college_biology": 0, |
|
"mmlu_college_chemistry": 0, |
|
"mmlu_college_computer_science": 0, |
|
"mmlu_college_mathematics": 0, |
|
"mmlu_college_medicine": 0, |
|
"mmlu_college_physics": 0, |
|
"mmlu_computer_security": 0, |
|
"mmlu_conceptual_physics": 0, |
|
"mmlu_econometrics": 0, |
|
"mmlu_electrical_engineering": 0, |
|
"mmlu_elementary_mathematics": 0, |
|
"mmlu_formal_logic": 0, |
|
"mmlu_global_facts": 0, |
|
"mmlu_high_school_biology": 0, |
|
"mmlu_high_school_chemistry": 0, |
|
"mmlu_high_school_computer_science": 0, |
|
"mmlu_high_school_european_history": 0, |
|
"mmlu_high_school_geography": 0, |
|
"mmlu_high_school_government_and_politics": 0, |
|
"mmlu_high_school_macroeconomics": 0, |
|
"mmlu_high_school_mathematics": 0, |
|
"mmlu_high_school_microeconomics": 0, |
|
"mmlu_high_school_physics": 0, |
|
"mmlu_high_school_psychology": 0, |
|
"mmlu_high_school_statistics": 0, |
|
"mmlu_high_school_us_history": 0, |
|
"mmlu_high_school_world_history": 0, |
|
"mmlu_human_aging": 0, |
|
"mmlu_human_sexuality": 0, |
|
"mmlu_international_law": 0, |
|
"mmlu_jurisprudence": 0, |
|
"mmlu_logical_fallacies": 0, |
|
"mmlu_machine_learning": 0, |
|
"mmlu_management": 0, |
|
"mmlu_marketing": 0, |
|
"mmlu_medical_genetics": 0, |
|
"mmlu_miscellaneous": 0, |
|
"mmlu_moral_disputes": 0, |
|
"mmlu_moral_scenarios": 0, |
|
"mmlu_nutrition": 0, |
|
"mmlu_philosophy": 0, |
|
"mmlu_prehistory": 0, |
|
"mmlu_professional_accounting": 0, |
|
"mmlu_professional_law": 0, |
|
"mmlu_professional_medicine": 0, |
|
"mmlu_professional_psychology": 0, |
|
"mmlu_public_relations": 0, |
|
"mmlu_security_studies": 0, |
|
"mmlu_sociology": 0, |
|
"mmlu_us_foreign_policy": 0, |
|
"mmlu_virology": 0, |
|
"mmlu_world_religions": 0 |
|
}, |
|
"higher_is_better": { |
|
"mmlu": { |
|
"acc": true |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"acc": true |
|
}, |
|
"mmlu_anatomy": { |
|
"acc": true |
|
}, |
|
"mmlu_astronomy": { |
|
"acc": true |
|
}, |
|
"mmlu_business_ethics": { |
|
"acc": true |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"acc": true |
|
}, |
|
"mmlu_college_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_college_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_college_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_college_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_college_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_college_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_computer_security": { |
|
"acc": true |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_econometrics": { |
|
"acc": true |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"acc": true |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_formal_logic": { |
|
"acc": true |
|
}, |
|
"mmlu_global_facts": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_geography": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"acc": true |
|
}, |
|
"mmlu_human_aging": { |
|
"acc": true |
|
}, |
|
"mmlu_human_sexuality": { |
|
"acc": true |
|
}, |
|
"mmlu_humanities": { |
|
"acc": true |
|
}, |
|
"mmlu_international_law": { |
|
"acc": true |
|
}, |
|
"mmlu_jurisprudence": { |
|
"acc": true |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"acc": true |
|
}, |
|
"mmlu_machine_learning": { |
|
"acc": true |
|
}, |
|
"mmlu_management": { |
|
"acc": true |
|
}, |
|
"mmlu_marketing": { |
|
"acc": true |
|
}, |
|
"mmlu_medical_genetics": { |
|
"acc": true |
|
}, |
|
"mmlu_miscellaneous": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_disputes": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"acc": true |
|
}, |
|
"mmlu_nutrition": { |
|
"acc": true |
|
}, |
|
"mmlu_other": { |
|
"acc": true |
|
}, |
|
"mmlu_philosophy": { |
|
"acc": true |
|
}, |
|
"mmlu_prehistory": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_accounting": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_law": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_public_relations": { |
|
"acc": true |
|
}, |
|
"mmlu_security_studies": { |
|
"acc": true |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc": true |
|
}, |
|
"mmlu_sociology": { |
|
"acc": true |
|
}, |
|
"mmlu_stem": { |
|
"acc": true |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"acc": true |
|
}, |
|
"mmlu_virology": { |
|
"acc": true |
|
}, |
|
"mmlu_world_religions": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"mmlu_elementary_mathematics": { |
|
"original": 378, |
|
"effective": 378 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"original": 145, |
|
"effective": 145 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_machine_learning": { |
|
"original": 112, |
|
"effective": 112 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"original": 151, |
|
"effective": 151 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"original": 310, |
|
"effective": 310 |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_biology": { |
|
"original": 144, |
|
"effective": 144 |
|
}, |
|
"mmlu_college_physics": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"mmlu_computer_security": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"original": 235, |
|
"effective": 235 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"original": 216, |
|
"effective": 216 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_astronomy": { |
|
"original": 152, |
|
"effective": 152 |
|
}, |
|
"mmlu_anatomy": { |
|
"original": 135, |
|
"effective": 135 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"original": 270, |
|
"effective": 270 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"original": 783, |
|
"effective": 783 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"mmlu_marketing": { |
|
"original": 234, |
|
"effective": 234 |
|
}, |
|
"mmlu_business_ethics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"original": 265, |
|
"effective": 265 |
|
}, |
|
"mmlu_human_aging": { |
|
"original": 223, |
|
"effective": 223 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"original": 282, |
|
"effective": 282 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_medicine": { |
|
"original": 173, |
|
"effective": 173 |
|
}, |
|
"mmlu_virology": { |
|
"original": 166, |
|
"effective": 166 |
|
}, |
|
"mmlu_nutrition": { |
|
"original": 306, |
|
"effective": 306 |
|
}, |
|
"mmlu_management": { |
|
"original": 103, |
|
"effective": 103 |
|
}, |
|
"mmlu_global_facts": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"original": 131, |
|
"effective": 131 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"original": 545, |
|
"effective": 545 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"mmlu_econometrics": { |
|
"original": 114, |
|
"effective": 114 |
|
}, |
|
"mmlu_public_relations": { |
|
"original": 110, |
|
"effective": 110 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"original": 198, |
|
"effective": 198 |
|
}, |
|
"mmlu_sociology": { |
|
"original": 201, |
|
"effective": 201 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"original": 193, |
|
"effective": 193 |
|
}, |
|
"mmlu_security_studies": { |
|
"original": 245, |
|
"effective": 245 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"original": 108, |
|
"effective": 108 |
|
}, |
|
"mmlu_international_law": { |
|
"original": 121, |
|
"effective": 121 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"original": 895, |
|
"effective": 895 |
|
}, |
|
"mmlu_philosophy": { |
|
"original": 311, |
|
"effective": 311 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"original": 237, |
|
"effective": 237 |
|
}, |
|
"mmlu_formal_logic": { |
|
"original": 126, |
|
"effective": 126 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"original": 204, |
|
"effective": 204 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"original": 346, |
|
"effective": 346 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"original": 163, |
|
"effective": 163 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"original": 165, |
|
"effective": 165 |
|
}, |
|
"mmlu_world_religions": { |
|
"original": 171, |
|
"effective": 171 |
|
}, |
|
"mmlu_prehistory": { |
|
"original": 324, |
|
"effective": 324 |
|
}, |
|
"mmlu_professional_law": { |
|
"original": 1534, |
|
"effective": 1534 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=tiiuae/Falcon3-7B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=True", |
|
"model_num_parameters": 7455550464, |
|
"model_dtype": "torch.bfloat16", |
|
"model_revision": "main", |
|
"model_sha": "5563a370c1848366c7a095bde4bbff2cdb419cc6", |
|
"batch_size": 1, |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": "5e10e017", |
|
"date": 1736901843.8252811, |
|
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", |
|
"transformers_version": "4.48.0", |
|
"upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", |
|
"tokenizer_pad_token": [ |
|
"<|pad|>", |
|
"2023" |
|
], |
|
"tokenizer_eos_token": [ |
|
"<|endoftext|>", |
|
"11" |
|
], |
|
"tokenizer_bos_token": [ |
|
null, |
|
"None" |
|
], |
|
"eot_token_id": 11, |
|
"max_length": 32768, |
|
"task_hashes": { |
|
"mmlu_elementary_mathematics": "6d47e01621b1ff088cf4d2606be08a46ae4fa10d2bf3529bd5a0f85d2832e0f6", |
|
"mmlu_electrical_engineering": "ef25c57c137bd2074c388edf889ea1a658e5a3afd3921887a6bdbe8b1cbdfc0f", |
|
"mmlu_college_mathematics": "118ed98b6c4bd806f93efddf09a3041a5128e8d4582b9fb7fe12f1a1ae38ecf4", |
|
"mmlu_machine_learning": "edba86c924c71abf5cc3c004d972c140f22bfabaa70041d3b8ae287866a9ce49", |
|
"mmlu_high_school_physics": "51bae6e0d59010099d6b490c5740b24713b5e66662e552aa4698a662bbf8b628", |
|
"mmlu_high_school_biology": "d99da3dd9a02094ae6e812eb30893f1b56ee748bf2ce91769728790f49a526b6", |
|
"mmlu_abstract_algebra": "c63adb6be5bfb9380a7f822a05102e469983e4522ce2fccfb05dc3ebb618c36c", |
|
"mmlu_college_biology": "ed93aba6c7bd7762a8eec5ce4b23c31549e52ced85fa75024d5996542518961b", |
|
"mmlu_college_physics": "2cd501daecd35dbcfb2d3338cf04960dfdb8789384b7af321ddf480a4bb293e3", |
|
"mmlu_computer_security": "adb17543d486c98e2c258c0b6450cf80889cfecbb204c658a88c375408a2d5ec", |
|
"mmlu_college_computer_science": "eef39460f59676420a6cd82b21f0a338b0afbc17f6759e2e6ee9164ba6dda170", |
|
"mmlu_high_school_chemistry": "6a0d95898c301509675c6c09024f1cfa75dfb7dd9c15709dc35428923b87c454", |
|
"mmlu_high_school_computer_science": "005460140c49df97c405dee883789e0fc8e2747ce74f7eacd692e429e732b0b5", |
|
"mmlu_conceptual_physics": "5eb25b75add800a0b85e7b69406dee40f20de3cd9f29c09fa65d59768449b729", |
|
"mmlu_high_school_statistics": "7600e8753249d21170484a51da34e671ff61d837a4f4b7b92e763f04c178b4ba", |
|
"mmlu_college_chemistry": "4793edf2d734030e6b49c443a4cfda8d2f2e34c9baa9112b9adb1cf79ba58bcf", |
|
"mmlu_astronomy": "bb5d9f011ccdeeb9e89210e2c88fb2702d535c896dc8a544534ce19a77bdd40c", |
|
"mmlu_anatomy": "f168b80d22fd964a0ea802808d94cdbf5cae82224e3d3602cc5ff912c366e1b3", |
|
"mmlu_high_school_mathematics": "321f1383949b54f2f51402b09925541b2e8a171359ad8fb0433c5d99b9674595", |
|
"mmlu_miscellaneous": "4c6d23e098aad1d79cdc6d956b8d66c3ca00003de07bd75300b870e9bf2ee253", |
|
"mmlu_professional_medicine": "56b70c1334dacf62b62d5a21f32d30c640a6afb1522994c2884b411f6c4a9a0b", |
|
"mmlu_marketing": "0134f11131a3a629c50102643862ebdd6acb617752938261b903ddb8afc40eba", |
|
"mmlu_business_ethics": "3e5ad06da30b6bb600036f7ff0202a5a2d06c0803223dcf8873f5f5782892f7d", |
|
"mmlu_clinical_knowledge": "3706b2cfd1a90b62b864d1534911d194afc384afb660563879d79e184e8cf3d4", |
|
"mmlu_human_aging": "e97889b26bd5d7b0a80e0d167ca12b7ae771d6b7359f6d780fa7fd98f4dadcec", |
|
"mmlu_professional_accounting": "7b38be5f62b6529524748f3a418444f8eaf77f17dcf40ed03a448118ec8b0f8f", |
|
"mmlu_medical_genetics": "e2ba83d6fbd06d87b8311a7dff3b336a6c89c3686652b3932c7ab46b384552e0", |
|
"mmlu_college_medicine": "971339e961cc8efc075c31d29cbc8f1a9834586160b0c5f46ff8b276afd0eec2", |
|
"mmlu_virology": "58b8f73b5103985889402935e2b0ffbf1a11b295b801d07c44ee752350de5d99", |
|
"mmlu_nutrition": "c6001266b538b2cdf473e816a2bcfeba547f03782c5bb0ad8804a2e1f97ea101", |
|
"mmlu_management": "22ca56010a69657348db8209d89abbbd12516ce3d196999d223a5ec0f0a5fa8d", |
|
"mmlu_global_facts": "0fecc8ba2c707eb82bbcbc7c59231aa56bf199d6241ea66486b4890f7c5a3769", |
|
"mmlu_human_sexuality": "c3952ead23515a5207cf9f3100720f2e7e87afd423707745440088945f8652fb", |
|
"mmlu_high_school_psychology": "fd2aba1beecb388fa7ac1516f3f164a8d4dfc003f1853302a0880b1f8fa98b69", |
|
"mmlu_us_foreign_policy": "6687777c37a19360984ee099dbf3f398c1167e24f61e7a4144186493a5fcca8e", |
|
"mmlu_professional_psychology": "8a0ad36605f937eecc2fb585d0b028799b532d91ba4635cac27c4edb64983588", |
|
"mmlu_econometrics": "653c77934b037d0f9161ec45aaa98289aa3c5bc21b168f53f500afb0e2558de8", |
|
"mmlu_public_relations": "4ab2f842b7193f7772b86b93907ae5e95602e1d0ab4d34bd8ffcd90eb636749a", |
|
"mmlu_high_school_macroeconomics": "9cb4eb0918a560ad4eb14644e75098ceb31fb47c2ddcb3d5cd0cfb453f42943f", |
|
"mmlu_high_school_geography": "1a7250b1bc9da6c95e32a1355cbfb55eafec79205473a02dd4e5b2dca62ee8b5", |
|
"mmlu_sociology": "94c24d5267dc4641df7050f706238d02da6bd59c9d13308b91f6f3e2e3c766df", |
|
"mmlu_high_school_government_and_politics": "fcb0e289d3d0b54c0dfd0d617a4e62181dfad12416a204d72d841fd4a99b8d9e", |
|
"mmlu_security_studies": "a17e8fdfdda63b0f637ee0708501ecf5726cb76e4202b1fd79caab408ee2643d", |
|
"mmlu_high_school_microeconomics": "383542db869a76d567e7c38637673e1b793c9b50b12fa9b0f65f68148a11787f", |
|
"mmlu_jurisprudence": "d1324a2503964003b6f8f1e2f0245f1119c12dd113203ad292736bac9a91a350", |
|
"mmlu_international_law": "38a92f06a96a87e69e12e82169bb7bd6f10f6b8adc61be20a9c68c0469d1d33d", |
|
"mmlu_moral_scenarios": "729862e143b7bdaeaaf8169163162bd57c908d073ce7ea91737b605456026ed0", |
|
"mmlu_philosophy": "763992eefbcda260efa16ebc995f09d244a6c8de4d61cb42ee1d7a9c5ca39543", |
|
"mmlu_high_school_world_history": "5b4e5fc132b2d94b43add2e24e3f7284551a8be325948d6bcbb71c9f6bc2392c", |
|
"mmlu_formal_logic": "fa096943ff3545d7d2fc3ac78194a0c1f352444e866511eb7737f06fbc8a7c9c", |
|
"mmlu_high_school_us_history": "15ba64945d9a5fcf19245da1fb2663f9dedfeeb57f5515d37819f5de22e66a07", |
|
"mmlu_moral_disputes": "39c141acc54f689a80e10e8615e1f62d581f09098edde4d389b1c13e92d4b49f", |
|
"mmlu_logical_fallacies": "79ae47f5687483604531efbfd296a1edfa2a55facce333d43223b4a8fdf8780b", |
|
"mmlu_high_school_european_history": "9d566a9a0b4521a56e56da75853682cbf6bee3f508101ae30e9516f2a1b42a15", |
|
"mmlu_world_religions": "f8ec050ecd0217b3f863b199b03792909c78f6daee67ec5018d8f3ef92ccfd83", |
|
"mmlu_prehistory": "cf0233bf3e56c9e67668dac16aed89d1721a87edb1456c4168493459ec3e4b28", |
|
"mmlu_professional_law": "80161dc5f1a2d756815ce70fa33c5846e5b326aeb46b6fdccaa05a91a34a3c05" |
|
}, |
|
"model_source": "hf", |
|
"model_name": "tiiuae/Falcon3-7B-Instruct", |
|
"model_name_sanitized": "tiiuae__Falcon3-7B-Instruct", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 612094.256100895, |
|
"end_time": 612237.200732146, |
|
"total_evaluation_time_seconds": "142.94463125104085" |
|
} |