joermd's picture
Clone model from ALLaM-AI/ALLaM-7B-Instruct-preview
6f25beb verified
raw
history blame
42.5 kB
{
"results": {
"agieval": {
"acc,none": 0.36453797774552493,
"acc_stderr,none": 0.004942349596688666,
"alias": "agieval"
},
"agieval_aqua_rat": {
"alias": " - agieval_aqua_rat",
"acc,none": 0.2283464566929134,
"acc_stderr,none": 0.026390526537822135,
"acc_norm,none": 0.20866141732283464,
"acc_norm_stderr,none": 0.02554712225493389
},
"agieval_gaokao_biology": {
"alias": " - agieval_gaokao_biology",
"acc,none": 0.29523809523809524,
"acc_stderr,none": 0.03155253554505397,
"acc_norm,none": 0.3476190476190476,
"acc_norm_stderr,none": 0.032940430891650836
},
"agieval_gaokao_chemistry": {
"alias": " - agieval_gaokao_chemistry",
"acc,none": 0.2753623188405797,
"acc_stderr,none": 0.031122831519058182,
"acc_norm,none": 0.30434782608695654,
"acc_norm_stderr,none": 0.03205882236563527
},
"agieval_gaokao_chinese": {
"alias": " - agieval_gaokao_chinese",
"acc,none": 0.3048780487804878,
"acc_stderr,none": 0.02941105055075626,
"acc_norm,none": 0.2886178861788618,
"acc_norm_stderr,none": 0.028948765576340286
},
"agieval_gaokao_english": {
"alias": " - agieval_gaokao_english",
"acc,none": 0.6470588235294118,
"acc_stderr,none": 0.027363593284684965,
"acc_norm,none": 0.6797385620915033,
"acc_norm_stderr,none": 0.026716118380156858
},
"agieval_gaokao_geography": {
"alias": " - agieval_gaokao_geography",
"acc,none": 0.3969849246231156,
"acc_stderr,none": 0.03477110537378156,
"acc_norm,none": 0.3768844221105528,
"acc_norm_stderr,none": 0.034439417931776
},
"agieval_gaokao_history": {
"alias": " - agieval_gaokao_history",
"acc,none": 0.39574468085106385,
"acc_stderr,none": 0.03196758697835363,
"acc_norm,none": 0.37872340425531914,
"acc_norm_stderr,none": 0.031709956060406545
},
"agieval_gaokao_mathcloze": {
"alias": " - agieval_gaokao_mathcloze",
"acc,none": 0.025423728813559324,
"acc_stderr,none": 0.014552399522167078
},
"agieval_gaokao_mathqa": {
"alias": " - agieval_gaokao_mathqa",
"acc,none": 0.23931623931623933,
"acc_stderr,none": 0.022806263357480903,
"acc_norm,none": 0.25925925925925924,
"acc_norm_stderr,none": 0.023424278964210166
},
"agieval_gaokao_physics": {
"alias": " - agieval_gaokao_physics",
"acc,none": 0.275,
"acc_stderr,none": 0.031652557907861915,
"acc_norm,none": 0.265,
"acc_norm_stderr,none": 0.03128528159088722
},
"agieval_jec_qa_ca": {
"alias": " - agieval_jec_qa_ca",
"acc,none": 0.5065065065065065,
"acc_stderr,none": 0.01582588330988679,
"acc_norm,none": 0.4934934934934935,
"acc_norm_stderr,none": 0.01582588330988679
},
"agieval_jec_qa_kd": {
"alias": " - agieval_jec_qa_kd",
"acc,none": 0.533,
"acc_stderr,none": 0.015784807891138772,
"acc_norm,none": 0.533,
"acc_norm_stderr,none": 0.015784807891138775
},
"agieval_logiqa_en": {
"alias": " - agieval_logiqa_en",
"acc,none": 0.35176651305683565,
"acc_stderr,none": 0.018729936274427355,
"acc_norm,none": 0.3671274961597542,
"acc_norm_stderr,none": 0.018906445694655587
},
"agieval_logiqa_zh": {
"alias": " - agieval_logiqa_zh",
"acc,none": 0.3425499231950845,
"acc_stderr,none": 0.018613868829208027,
"acc_norm,none": 0.35944700460829493,
"acc_norm_stderr,none": 0.018820809084481267
},
"agieval_lsat_ar": {
"alias": " - agieval_lsat_ar",
"acc,none": 0.22608695652173913,
"acc_stderr,none": 0.02764178570724134,
"acc_norm,none": 0.2391304347826087,
"acc_norm_stderr,none": 0.028187385293933942
},
"agieval_lsat_lr": {
"alias": " - agieval_lsat_lr",
"acc,none": 0.4117647058823529,
"acc_stderr,none": 0.02181429628344194,
"acc_norm,none": 0.4137254901960784,
"acc_norm_stderr,none": 0.021829699356254582
},
"agieval_lsat_rc": {
"alias": " - agieval_lsat_rc",
"acc,none": 0.5092936802973977,
"acc_stderr,none": 0.030537084593525405,
"acc_norm,none": 0.5018587360594795,
"acc_norm_stderr,none": 0.030542150046756422
},
"agieval_math": {
"alias": " - agieval_math",
"acc,none": 0.038,
"acc_stderr,none": 0.006049181150584934
},
"agieval_sat_en": {
"alias": " - agieval_sat_en",
"acc,none": 0.7233009708737864,
"acc_stderr,none": 0.03124542318927994,
"acc_norm,none": 0.6990291262135923,
"acc_norm_stderr,none": 0.03203560571847412
},
"agieval_sat_en_without_passage": {
"alias": " - agieval_sat_en_without_passage",
"acc,none": 0.47572815533980584,
"acc_stderr,none": 0.034880344423561846,
"acc_norm,none": 0.4368932038834951,
"acc_norm_stderr,none": 0.03464225055241279
},
"agieval_sat_math": {
"alias": " - agieval_sat_math",
"acc,none": 0.3409090909090909,
"acc_stderr,none": 0.03203095553573995,
"acc_norm,none": 0.2818181818181818,
"acc_norm_stderr,none": 0.030400424640665242
}
},
"groups": {
"agieval": {
"acc,none": 0.36453797774552493,
"acc_stderr,none": 0.004942349596688666,
"alias": "agieval"
}
},
"group_subtasks": {
"agieval": [
"agieval_gaokao_biology",
"agieval_gaokao_chemistry",
"agieval_gaokao_chinese",
"agieval_gaokao_geography",
"agieval_gaokao_history",
"agieval_gaokao_mathcloze",
"agieval_gaokao_mathqa",
"agieval_gaokao_physics",
"agieval_jec_qa_ca",
"agieval_jec_qa_kd",
"agieval_logiqa_zh",
"agieval_aqua_rat",
"agieval_gaokao_english",
"agieval_logiqa_en",
"agieval_lsat_ar",
"agieval_lsat_lr",
"agieval_lsat_rc",
"agieval_math",
"agieval_sat_en_without_passage",
"agieval_sat_en",
"agieval_sat_math"
]
},
"configs": {
"agieval_aqua_rat": {
"task": "agieval_aqua_rat",
"dataset_path": "hails/agieval-aqua-rat",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_biology": {
"task": "agieval_gaokao_biology",
"dataset_path": "hails/agieval-gaokao-biology",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chemistry": {
"task": "agieval_gaokao_chemistry",
"dataset_path": "hails/agieval-gaokao-chemistry",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_chinese": {
"task": "agieval_gaokao_chinese",
"dataset_path": "hails/agieval-gaokao-chinese",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_english": {
"task": "agieval_gaokao_english",
"dataset_path": "hails/agieval-gaokao-english",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_geography": {
"task": "agieval_gaokao_geography",
"dataset_path": "hails/agieval-gaokao-geography",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_history": {
"task": "agieval_gaokao_history",
"dataset_path": "hails/agieval-gaokao-history",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathcloze": {
"task": "agieval_gaokao_mathcloze",
"dataset_path": "hails/agieval-gaokao-mathcloze",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_mathqa": {
"task": "agieval_gaokao_mathqa",
"dataset_path": "hails/agieval-gaokao-mathqa",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_gaokao_physics": {
"task": "agieval_gaokao_physics",
"dataset_path": "hails/agieval-gaokao-physics",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_ca": {
"task": "agieval_jec_qa_ca",
"dataset_path": "hails/agieval-jec-qa-ca",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_jec_qa_kd": {
"task": "agieval_jec_qa_kd",
"dataset_path": "hails/agieval-jec-qa-kd",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_en": {
"task": "agieval_logiqa_en",
"dataset_path": "hails/agieval-logiqa-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_logiqa_zh": {
"task": "agieval_logiqa_zh",
"dataset_path": "hails/agieval-logiqa-zh",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_ar": {
"task": "agieval_lsat_ar",
"dataset_path": "hails/agieval-lsat-ar",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_lr": {
"task": "agieval_lsat_lr",
"dataset_path": "hails/agieval-lsat-lr",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_lsat_rc": {
"task": "agieval_lsat_rc",
"dataset_path": "hails/agieval-lsat-rc",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_math": {
"task": "agieval_math",
"dataset_path": "hails/agieval-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{answer}}",
"process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n candidate = results[0]\n\n gold = doc[\"answer\"]\n\n if not gold:\n print(doc, candidate, gold)\n if is_equiv(candidate, gold):\n retval = 1\n else:\n retval = 0\n\n results = {\n \"acc\": retval,\n }\n return results\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"max_gen_toks": 32,
"do_sample": false,
"temperature": 0.0,
"until": [
"Q:"
]
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en": {
"task": "agieval_sat_en",
"dataset_path": "hails/agieval-sat-en",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_en_without_passage": {
"task": "agieval_sat_en_without_passage",
"dataset_path": "hails/agieval-sat-en-without-passage",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"agieval_sat_math": {
"task": "agieval_sat_math",
"dataset_path": "hails/agieval-sat-math",
"test_split": "test",
"doc_to_text": "{{query}}",
"doc_to_target": "{{gold}}",
"doc_to_choice": "{{choices}}",
"process_results": "def process_results_mcqa(doc, results):\n results = [result[0] for result in results]\n\n gold = doc[\"gold\"]\n\n acc = 1.0 if int(np.argmax(results)) in gold else 0.0\n completion_len = np.array([float(len(i)) for i in doc[\"choices\"]])\n acc_norm = 1.0 if int(np.argmax(results / completion_len)) in gold else 0.0\n\n return {\n \"acc\": acc,\n \"acc_norm\": acc_norm,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
}
},
"versions": {
"agieval": 0.0,
"agieval_aqua_rat": 1.0,
"agieval_gaokao_biology": 1.0,
"agieval_gaokao_chemistry": 1.0,
"agieval_gaokao_chinese": 1.0,
"agieval_gaokao_english": 1.0,
"agieval_gaokao_geography": 1.0,
"agieval_gaokao_history": 1.0,
"agieval_gaokao_mathcloze": 1.0,
"agieval_gaokao_mathqa": 1.0,
"agieval_gaokao_physics": 1.0,
"agieval_jec_qa_ca": 1.0,
"agieval_jec_qa_kd": 1.0,
"agieval_logiqa_en": 1.0,
"agieval_logiqa_zh": 1.0,
"agieval_lsat_ar": 1.0,
"agieval_lsat_lr": 1.0,
"agieval_lsat_rc": 1.0,
"agieval_math": 1.0,
"agieval_sat_en": 1.0,
"agieval_sat_en_without_passage": 1.0,
"agieval_sat_math": 1.0
},
"n-shot": {
"agieval_aqua_rat": 0,
"agieval_gaokao_biology": 0,
"agieval_gaokao_chemistry": 0,
"agieval_gaokao_chinese": 0,
"agieval_gaokao_english": 0,
"agieval_gaokao_geography": 0,
"agieval_gaokao_history": 0,
"agieval_gaokao_mathcloze": 0,
"agieval_gaokao_mathqa": 0,
"agieval_gaokao_physics": 0,
"agieval_jec_qa_ca": 0,
"agieval_jec_qa_kd": 0,
"agieval_logiqa_en": 0,
"agieval_logiqa_zh": 0,
"agieval_lsat_ar": 0,
"agieval_lsat_lr": 0,
"agieval_lsat_rc": 0,
"agieval_math": 0,
"agieval_sat_en": 0,
"agieval_sat_en_without_passage": 0,
"agieval_sat_math": 0
},
"higher_is_better": {
"agieval": {
"acc": true,
"acc_norm": true
},
"agieval_aqua_rat": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_biology": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chemistry": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_chinese": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_english": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_geography": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_history": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_mathcloze": {
"acc": true
},
"agieval_gaokao_mathqa": {
"acc": true,
"acc_norm": true
},
"agieval_gaokao_physics": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_ca": {
"acc": true,
"acc_norm": true
},
"agieval_jec_qa_kd": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_en": {
"acc": true,
"acc_norm": true
},
"agieval_logiqa_zh": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_ar": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_lr": {
"acc": true,
"acc_norm": true
},
"agieval_lsat_rc": {
"acc": true,
"acc_norm": true
},
"agieval_math": {
"acc": true
},
"agieval_sat_en": {
"acc": true,
"acc_norm": true
},
"agieval_sat_en_without_passage": {
"acc": true,
"acc_norm": true
},
"agieval_sat_math": {
"acc": true,
"acc_norm": true
}
},
"n-samples": {
"agieval_gaokao_biology": {
"original": 210,
"effective": 210
},
"agieval_gaokao_chemistry": {
"original": 207,
"effective": 207
},
"agieval_gaokao_chinese": {
"original": 246,
"effective": 246
},
"agieval_gaokao_geography": {
"original": 199,
"effective": 199
},
"agieval_gaokao_history": {
"original": 235,
"effective": 235
},
"agieval_gaokao_mathcloze": {
"original": 118,
"effective": 118
},
"agieval_gaokao_mathqa": {
"original": 351,
"effective": 351
},
"agieval_gaokao_physics": {
"original": 200,
"effective": 200
},
"agieval_jec_qa_ca": {
"original": 999,
"effective": 999
},
"agieval_jec_qa_kd": {
"original": 1000,
"effective": 1000
},
"agieval_logiqa_zh": {
"original": 651,
"effective": 651
},
"agieval_aqua_rat": {
"original": 254,
"effective": 254
},
"agieval_gaokao_english": {
"original": 306,
"effective": 306
},
"agieval_logiqa_en": {
"original": 651,
"effective": 651
},
"agieval_lsat_ar": {
"original": 230,
"effective": 230
},
"agieval_lsat_lr": {
"original": 510,
"effective": 510
},
"agieval_lsat_rc": {
"original": 269,
"effective": 269
},
"agieval_math": {
"original": 1000,
"effective": 1000
},
"agieval_sat_en_without_passage": {
"original": 206,
"effective": 206
},
"agieval_sat_en": {
"original": 206,
"effective": 206
},
"agieval_sat_math": {
"original": 220,
"effective": 220
}
},
"config": {
"model": "hf",
"model_args": "pretrained=mistralai/Mistral-7B-Instruct-v0.3,trust_remote_code=True,cache_dir=/tmp,parallelize=False",
"model_num_parameters": 7248023552,
"model_dtype": "torch.bfloat16",
"model_revision": "main",
"model_sha": "e0bc86c23ce5aae1db576c8cca6f06f1f73af2db",
"batch_size": 1,
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "112b79143",
"date": 1739246582.6735382,
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
"transformers_version": "4.48.3",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<unk>",
"0"
],
"tokenizer_eos_token": [
"</s>",
"2"
],
"tokenizer_bos_token": [
"<s>",
"1"
],
"eot_token_id": 2,
"max_length": 32768,
"task_hashes": {},
"model_source": "hf",
"model_name": "mistralai/Mistral-7B-Instruct-v0.3",
"model_name_sanitized": "mistralai__Mistral-7B-Instruct-v0.3",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 1357016.699727388,
"end_time": 1359325.218546683,
"total_evaluation_time_seconds": "2308.51881929487"
}