{ "results": { "arabicmmlu": { "acc,none": 0.6936008301625735, "acc_stderr,none": 0.00373302587909067, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.6827453142227122, "acc_stderr,none": 0.007472393741912611, "alias": " - Humanities" }, "arabicmmlu_high_history": { "alias": " - High History", "acc,none": 0.5263157894736842, "acc_stderr,none": 0.0181236958723731 }, "arabicmmlu_high_islamic_studies": { "alias": " - High Islamic Studies", "acc,none": 0.7125748502994012, "acc_stderr,none": 0.02480021874723033 }, "arabicmmlu_high_philosophy": { "alias": " - High Philosophy", "acc,none": 0.717948717948718, "acc_stderr,none": 0.07299934324587597 }, "arabicmmlu_islamic_studies": { "alias": " - Islamic Studies", "acc,none": 0.5743348982785602, "acc_stderr,none": 0.01957520354642272 }, "arabicmmlu_middle_history": { "alias": " - Middle History", "acc,none": 0.7142857142857143, "acc_stderr,none": 0.0317852971064275 }, "arabicmmlu_middle_islamic_studies": { "alias": " - Middle Islamic Studies", "acc,none": 0.6974789915966386, "acc_stderr,none": 0.029837962388291922 }, "arabicmmlu_primary_history": { "alias": " - Primary History", "acc,none": 0.696078431372549, "acc_stderr,none": 0.045766654032077636 }, "arabicmmlu_primary_islamic_studies": { "alias": " - Primary Islamic Studies", "acc,none": 0.8438438438438438, "acc_stderr,none": 0.011490669345809187 }, "arabicmmlu_prof_law": { "alias": " - Prof Law", "acc,none": 0.697452229299363, "acc_stderr,none": 0.02596462432074243 }, "arabicmmlu_language": { "acc,none": 0.6980558930741191, "acc_stderr,none": 0.010952159128929795, "alias": " - Language" }, "arabicmmlu_arabic_language_(general)": { "alias": " - Arabic Language (General)", "acc,none": 0.7973856209150327, "acc_stderr,none": 0.01626105528374612 }, "arabicmmlu_arabic_language_(grammar)": { "alias": " - Arabic Language (Grammar)", "acc,none": 0.7095890410958904, "acc_stderr,none": 0.02379355080761079 }, "arabicmmlu_high_arabic_language": { "alias": " - High Arabic Language", "acc,none": 0.4948717948717949, "acc_stderr,none": 0.025349672906838653 }, "arabicmmlu_middle_arabic_language": { "alias": " - Middle Arabic Language", "acc,none": 0.7777777777777778, "acc_stderr,none": 0.08153326507837146 }, "arabicmmlu_primary_arabic_language": { "alias": " - Primary Arabic Language", "acc,none": 0.746031746031746, "acc_stderr,none": 0.027474608338697432 }, "arabicmmlu_other": { "acc,none": 0.7270531400966184, "acc_stderr,none": 0.008920558221864296, "alias": " - Other" }, "arabicmmlu_driving_test": { "alias": " - Driving Test", "acc,none": 0.7563996696944674, "acc_stderr,none": 0.012340191989229594 }, "arabicmmlu_general_knowledge": { "alias": " - General Knowledge", "acc,none": 0.6828703703703703, "acc_stderr,none": 0.01584098369286431 }, "arabicmmlu_middle_general_knowledge": { "alias": " - Middle General Knowledge", "acc,none": 0.7151162790697675, "acc_stderr,none": 0.0345162887625062 }, "arabicmmlu_primary_general_knowledge": { "alias": " - Primary General Knowledge", "acc,none": 0.7345679012345679, "acc_stderr,none": 0.034800041025035575 }, "arabicmmlu_univ_management": { "alias": " - Univ Management", "acc,none": 0.7733333333333333, "acc_stderr,none": 0.04866999865182628 }, "arabicmmlu_social_science": { "acc,none": 0.6843607305936074, "acc_stderr,none": 0.007708754356580086, "alias": " - Social Science" }, "arabicmmlu_high_civics": { "alias": " - High Civics", "acc,none": 0.47126436781609193, "acc_stderr,none": 0.05382727149237504 }, "arabicmmlu_high_economics": { "alias": " - High Economics", "acc,none": 0.6861111111111111, "acc_stderr,none": 0.02449277389433383 }, "arabicmmlu_high_geography": { "alias": " - High Geography", "acc,none": 0.6078998073217726, "acc_stderr,none": 0.015160905911641495 }, "arabicmmlu_middle_civics": { "alias": " - Middle Civics", "acc,none": 0.6228813559322034, "acc_stderr,none": 0.03161605923498462 }, "arabicmmlu_middle_economics": { "alias": " - Middle Economics", "acc,none": 0.8045977011494253, "acc_stderr,none": 0.04275678110973871 }, "arabicmmlu_middle_geography": { "alias": " - Middle Geography", "acc,none": 0.7169117647058824, "acc_stderr,none": 0.02736586113151381 }, "arabicmmlu_middle_social_science": { "alias": " - Middle Social Science", "acc,none": 0.6265560165975104, "acc_stderr,none": 0.03122389407322075 }, "arabicmmlu_primary_geography": { "alias": " - Primary Geography", "acc,none": 0.8245614035087719, "acc_stderr,none": 0.05082531275857955 }, "arabicmmlu_primary_social_science": { "alias": " - Primary Social Science", "acc,none": 0.8297872340425532, "acc_stderr,none": 0.014164234541466977 }, "arabicmmlu_univ_accounting": { "alias": " - Univ Accounting", "acc,none": 0.7297297297297297, "acc_stderr,none": 0.05197789984508372 }, "arabicmmlu_univ_economics": { "alias": " - Univ Economics", "acc,none": 0.635036496350365, "acc_stderr,none": 0.041281418039994466 }, "arabicmmlu_univ_political_science": { "alias": " - Univ Political Science", "acc,none": 0.680952380952381, "acc_stderr,none": 0.03224133248962465 }, "arabicmmlu_stem": { "acc,none": 0.6877544628875666, "acc_stderr,none": 0.0078686460877362, "alias": " - STEM" }, "arabicmmlu_high_biology": { "alias": " - High Biology", "acc,none": 0.5592618878637331, "acc_stderr,none": 0.013231119391259417 }, "arabicmmlu_high_computer_science": { "alias": " - High Computer Science", "acc,none": 0.7279693486590039, "acc_stderr,none": 0.027598075188734354 }, "arabicmmlu_high_physics": { "alias": " - High Physics", "acc,none": 0.6, "acc_stderr,none": 0.030738931174713525 }, "arabicmmlu_middle_computer_science": { "alias": " - Middle Computer Science", "acc,none": 0.9629629629629629, "acc_stderr,none": 0.037037037037037035 }, "arabicmmlu_middle_natural_science": { "alias": " - Middle Natural Science", "acc,none": 0.8471074380165289, "acc_stderr,none": 0.0231821603389708 }, "arabicmmlu_primary_computer_science": { "alias": " - Primary Computer Science", "acc,none": 0.8, "acc_stderr,none": 0.02909571869813228 }, "arabicmmlu_primary_math": { "alias": " - Primary Math", "acc,none": 0.823960880195599, "acc_stderr,none": 0.018855055239784486 }, "arabicmmlu_primary_natural_science": { "alias": " - Primary Natural Science", "acc,none": 0.8720238095238095, "acc_stderr,none": 0.018251827563156547 }, "arabicmmlu_univ_computer_science": { "alias": " - Univ Computer Science", "acc,none": 0.8125, "acc_stderr,none": 0.0491747370293402 } }, "groups": { "arabicmmlu": { "acc,none": 0.6936008301625735, "acc_stderr,none": 0.00373302587909067, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.6827453142227122, "acc_stderr,none": 0.007472393741912611, "alias": " - Humanities" }, "arabicmmlu_language": { "acc,none": 0.6980558930741191, "acc_stderr,none": 0.010952159128929795, "alias": " - Language" }, "arabicmmlu_other": { "acc,none": 0.7270531400966184, "acc_stderr,none": 0.008920558221864296, "alias": " - Other" }, "arabicmmlu_social_science": { "acc,none": 0.6843607305936074, "acc_stderr,none": 0.007708754356580086, "alias": " - Social Science" }, "arabicmmlu_stem": { "acc,none": 0.6877544628875666, "acc_stderr,none": 0.0078686460877362, "alias": " - STEM" } }, "group_subtasks": { "arabicmmlu_language": [ "arabicmmlu_arabic_language_(grammar)", "arabicmmlu_middle_arabic_language", "arabicmmlu_high_arabic_language", "arabicmmlu_primary_arabic_language", "arabicmmlu_arabic_language_(general)" ], "arabicmmlu_stem": [ "arabicmmlu_primary_computer_science", "arabicmmlu_univ_computer_science", "arabicmmlu_middle_natural_science", "arabicmmlu_high_physics", "arabicmmlu_primary_math", "arabicmmlu_primary_natural_science", "arabicmmlu_high_biology", "arabicmmlu_middle_computer_science", "arabicmmlu_high_computer_science" ], "arabicmmlu_humanities": [ "arabicmmlu_middle_islamic_studies", "arabicmmlu_high_history", "arabicmmlu_islamic_studies", "arabicmmlu_high_philosophy", "arabicmmlu_prof_law", "arabicmmlu_high_islamic_studies", "arabicmmlu_primary_islamic_studies", "arabicmmlu_primary_history", "arabicmmlu_middle_history" ], "arabicmmlu_social_science": [ "arabicmmlu_primary_geography", "arabicmmlu_middle_economics", "arabicmmlu_univ_political_science", "arabicmmlu_primary_social_science", "arabicmmlu_middle_civics", "arabicmmlu_high_civics", "arabicmmlu_middle_geography", "arabicmmlu_univ_economics", "arabicmmlu_univ_accounting", "arabicmmlu_high_geography", "arabicmmlu_high_economics", "arabicmmlu_middle_social_science" ], "arabicmmlu_other": [ "arabicmmlu_middle_general_knowledge", "arabicmmlu_driving_test", "arabicmmlu_univ_management", "arabicmmlu_general_knowledge", "arabicmmlu_primary_general_knowledge" ], "arabicmmlu": [ "arabicmmlu_other", "arabicmmlu_social_science", "arabicmmlu_humanities", "arabicmmlu_stem", "arabicmmlu_language" ] }, "configs": { "arabicmmlu_arabic_language_(general)": { "task": "arabicmmlu_arabic_language_(general)", "task_alias": "Arabic Language (General)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (General)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_arabic_language_(grammar)": { "task": "arabicmmlu_arabic_language_(grammar)", "task_alias": "Arabic Language (Grammar)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (Grammar)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_driving_test": { "task": "arabicmmlu_driving_test", "task_alias": "Driving Test", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Driving Test", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_general_knowledge": { "task": "arabicmmlu_general_knowledge", "task_alias": "General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_arabic_language": { "task": "arabicmmlu_high_arabic_language", "task_alias": "High Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_biology": { "task": "arabicmmlu_high_biology", "task_alias": "High Biology", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Biology", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_civics": { "task": "arabicmmlu_high_civics", "task_alias": "High Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_computer_science": { "task": "arabicmmlu_high_computer_science", "task_alias": "High Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_economics": { "task": "arabicmmlu_high_economics", "task_alias": "High Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_geography": { "task": "arabicmmlu_high_geography", "task_alias": "High Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_history": { "task": "arabicmmlu_high_history", "task_alias": "High History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_islamic_studies": { "task": "arabicmmlu_high_islamic_studies", "task_alias": "High Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_philosophy": { "task": "arabicmmlu_high_philosophy", "task_alias": "High Philosophy", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Philosophy", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_physics": { "task": "arabicmmlu_high_physics", "task_alias": "High Physics", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Physics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_islamic_studies": { "task": "arabicmmlu_islamic_studies", "task_alias": "Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_arabic_language": { "task": "arabicmmlu_middle_arabic_language", "task_alias": "Middle Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_civics": { "task": "arabicmmlu_middle_civics", "task_alias": "Middle Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_computer_science": { "task": "arabicmmlu_middle_computer_science", "task_alias": "Middle Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_economics": { "task": "arabicmmlu_middle_economics", "task_alias": "Middle Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_general_knowledge": { "task": "arabicmmlu_middle_general_knowledge", "task_alias": "Middle General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_geography": { "task": "arabicmmlu_middle_geography", "task_alias": "Middle Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_history": { "task": "arabicmmlu_middle_history", "task_alias": "Middle History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_islamic_studies": { "task": "arabicmmlu_middle_islamic_studies", "task_alias": "Middle Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_natural_science": { "task": "arabicmmlu_middle_natural_science", "task_alias": "Middle Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_social_science": { "task": "arabicmmlu_middle_social_science", "task_alias": "Middle Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_arabic_language": { "task": "arabicmmlu_primary_arabic_language", "task_alias": "Primary Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_computer_science": { "task": "arabicmmlu_primary_computer_science", "task_alias": "Primary Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_general_knowledge": { "task": "arabicmmlu_primary_general_knowledge", "task_alias": "Primary General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_geography": { "task": "arabicmmlu_primary_geography", "task_alias": "Primary Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_history": { "task": "arabicmmlu_primary_history", "task_alias": "Primary History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_islamic_studies": { "task": "arabicmmlu_primary_islamic_studies", "task_alias": "Primary Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_math": { "task": "arabicmmlu_primary_math", "task_alias": "Primary Math", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Math", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_natural_science": { "task": "arabicmmlu_primary_natural_science", "task_alias": "Primary Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_social_science": { "task": "arabicmmlu_primary_social_science", "task_alias": "Primary Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_prof_law": { "task": "arabicmmlu_prof_law", "task_alias": "Prof Law", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Prof Law", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_accounting": { "task": "arabicmmlu_univ_accounting", "task_alias": "Univ Accounting", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Accounting", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_computer_science": { "task": "arabicmmlu_univ_computer_science", "task_alias": "Univ Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_economics": { "task": "arabicmmlu_univ_economics", "task_alias": "Univ Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_management": { "task": "arabicmmlu_univ_management", "task_alias": "Univ Management", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Management", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_political_science": { "task": "arabicmmlu_univ_political_science", "task_alias": "Univ Political Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Political Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "arabicmmlu": 0, "arabicmmlu_arabic_language_(general)": 0.0, "arabicmmlu_arabic_language_(grammar)": 0.0, "arabicmmlu_driving_test": 0.0, "arabicmmlu_general_knowledge": 0.0, "arabicmmlu_high_arabic_language": 0.0, "arabicmmlu_high_biology": 0.0, "arabicmmlu_high_civics": 0.0, "arabicmmlu_high_computer_science": 0.0, "arabicmmlu_high_economics": 0.0, "arabicmmlu_high_geography": 0.0, "arabicmmlu_high_history": 0.0, "arabicmmlu_high_islamic_studies": 0.0, "arabicmmlu_high_philosophy": 0.0, "arabicmmlu_high_physics": 0.0, "arabicmmlu_humanities": 0, "arabicmmlu_islamic_studies": 0.0, "arabicmmlu_language": 0, "arabicmmlu_middle_arabic_language": 0.0, "arabicmmlu_middle_civics": 0.0, "arabicmmlu_middle_computer_science": 0.0, "arabicmmlu_middle_economics": 0.0, "arabicmmlu_middle_general_knowledge": 0.0, "arabicmmlu_middle_geography": 0.0, "arabicmmlu_middle_history": 0.0, "arabicmmlu_middle_islamic_studies": 0.0, "arabicmmlu_middle_natural_science": 0.0, "arabicmmlu_middle_social_science": 0.0, "arabicmmlu_other": 0, "arabicmmlu_primary_arabic_language": 0.0, "arabicmmlu_primary_computer_science": 0.0, "arabicmmlu_primary_general_knowledge": 0.0, "arabicmmlu_primary_geography": 0.0, "arabicmmlu_primary_history": 0.0, "arabicmmlu_primary_islamic_studies": 0.0, "arabicmmlu_primary_math": 0.0, "arabicmmlu_primary_natural_science": 0.0, "arabicmmlu_primary_social_science": 0.0, "arabicmmlu_prof_law": 0.0, "arabicmmlu_social_science": 0, "arabicmmlu_stem": 0, "arabicmmlu_univ_accounting": 0.0, "arabicmmlu_univ_computer_science": 0.0, "arabicmmlu_univ_economics": 0.0, "arabicmmlu_univ_management": 0.0, "arabicmmlu_univ_political_science": 0.0 }, "n-shot": { "arabicmmlu_arabic_language_(general)": 0, "arabicmmlu_arabic_language_(grammar)": 0, "arabicmmlu_driving_test": 0, "arabicmmlu_general_knowledge": 0, "arabicmmlu_high_arabic_language": 0, "arabicmmlu_high_biology": 0, "arabicmmlu_high_civics": 0, "arabicmmlu_high_computer_science": 0, "arabicmmlu_high_economics": 0, "arabicmmlu_high_geography": 0, "arabicmmlu_high_history": 0, "arabicmmlu_high_islamic_studies": 0, "arabicmmlu_high_philosophy": 0, "arabicmmlu_high_physics": 0, "arabicmmlu_islamic_studies": 0, "arabicmmlu_middle_arabic_language": 0, "arabicmmlu_middle_civics": 0, "arabicmmlu_middle_computer_science": 0, "arabicmmlu_middle_economics": 0, "arabicmmlu_middle_general_knowledge": 0, "arabicmmlu_middle_geography": 0, "arabicmmlu_middle_history": 0, "arabicmmlu_middle_islamic_studies": 0, "arabicmmlu_middle_natural_science": 0, "arabicmmlu_middle_social_science": 0, "arabicmmlu_primary_arabic_language": 0, "arabicmmlu_primary_computer_science": 0, "arabicmmlu_primary_general_knowledge": 0, "arabicmmlu_primary_geography": 0, "arabicmmlu_primary_history": 0, "arabicmmlu_primary_islamic_studies": 0, "arabicmmlu_primary_math": 0, "arabicmmlu_primary_natural_science": 0, "arabicmmlu_primary_social_science": 0, "arabicmmlu_prof_law": 0, "arabicmmlu_univ_accounting": 0, "arabicmmlu_univ_computer_science": 0, "arabicmmlu_univ_economics": 0, "arabicmmlu_univ_management": 0, "arabicmmlu_univ_political_science": 0 }, "higher_is_better": { "arabicmmlu": { "acc": true }, "arabicmmlu_arabic_language_(general)": { "acc": true }, "arabicmmlu_arabic_language_(grammar)": { "acc": true }, "arabicmmlu_driving_test": { "acc": true }, "arabicmmlu_general_knowledge": { "acc": true }, "arabicmmlu_high_arabic_language": { "acc": true }, "arabicmmlu_high_biology": { "acc": true }, "arabicmmlu_high_civics": { "acc": true }, "arabicmmlu_high_computer_science": { "acc": true }, "arabicmmlu_high_economics": { "acc": true }, "arabicmmlu_high_geography": { "acc": true }, "arabicmmlu_high_history": { "acc": true }, "arabicmmlu_high_islamic_studies": { "acc": true }, "arabicmmlu_high_philosophy": { "acc": true }, "arabicmmlu_high_physics": { "acc": true }, "arabicmmlu_humanities": { "acc": true }, "arabicmmlu_islamic_studies": { "acc": true }, "arabicmmlu_language": { "acc": true }, "arabicmmlu_middle_arabic_language": { "acc": true }, "arabicmmlu_middle_civics": { "acc": true }, "arabicmmlu_middle_computer_science": { "acc": true }, "arabicmmlu_middle_economics": { "acc": true }, "arabicmmlu_middle_general_knowledge": { "acc": true }, "arabicmmlu_middle_geography": { "acc": true }, "arabicmmlu_middle_history": { "acc": true }, "arabicmmlu_middle_islamic_studies": { "acc": true }, "arabicmmlu_middle_natural_science": { "acc": true }, "arabicmmlu_middle_social_science": { "acc": true }, "arabicmmlu_other": { "acc": true }, "arabicmmlu_primary_arabic_language": { "acc": true }, "arabicmmlu_primary_computer_science": { "acc": true }, "arabicmmlu_primary_general_knowledge": { "acc": true }, "arabicmmlu_primary_geography": { "acc": true }, "arabicmmlu_primary_history": { "acc": true }, "arabicmmlu_primary_islamic_studies": { "acc": true }, "arabicmmlu_primary_math": { "acc": true }, "arabicmmlu_primary_natural_science": { "acc": true }, "arabicmmlu_primary_social_science": { "acc": true }, "arabicmmlu_prof_law": { "acc": true }, "arabicmmlu_social_science": { "acc": true }, "arabicmmlu_stem": { "acc": true }, "arabicmmlu_univ_accounting": { "acc": true }, "arabicmmlu_univ_computer_science": { "acc": true }, "arabicmmlu_univ_economics": { "acc": true }, "arabicmmlu_univ_management": { "acc": true }, "arabicmmlu_univ_political_science": { "acc": true } }, "n-samples": { "arabicmmlu_middle_general_knowledge": { "original": 172, "effective": 172 }, "arabicmmlu_driving_test": { "original": 1211, "effective": 1211 }, "arabicmmlu_univ_management": { "original": 75, "effective": 75 }, "arabicmmlu_general_knowledge": { "original": 864, "effective": 864 }, "arabicmmlu_primary_general_knowledge": { "original": 162, "effective": 162 }, "arabicmmlu_primary_geography": { "original": 57, "effective": 57 }, "arabicmmlu_middle_economics": { "original": 87, "effective": 87 }, "arabicmmlu_univ_political_science": { "original": 210, "effective": 210 }, "arabicmmlu_primary_social_science": { "original": 705, "effective": 705 }, "arabicmmlu_middle_civics": { "original": 236, "effective": 236 }, "arabicmmlu_high_civics": { "original": 87, "effective": 87 }, "arabicmmlu_middle_geography": { "original": 272, "effective": 272 }, "arabicmmlu_univ_economics": { "original": 137, "effective": 137 }, "arabicmmlu_univ_accounting": { "original": 74, "effective": 74 }, "arabicmmlu_high_geography": { "original": 1038, "effective": 1038 }, "arabicmmlu_high_economics": { "original": 360, "effective": 360 }, "arabicmmlu_middle_social_science": { "original": 241, "effective": 241 }, "arabicmmlu_middle_islamic_studies": { "original": 238, "effective": 238 }, "arabicmmlu_high_history": { "original": 760, "effective": 760 }, "arabicmmlu_islamic_studies": { "original": 639, "effective": 639 }, "arabicmmlu_high_philosophy": { "original": 39, "effective": 39 }, "arabicmmlu_prof_law": { "original": 314, "effective": 314 }, "arabicmmlu_high_islamic_studies": { "original": 334, "effective": 334 }, "arabicmmlu_primary_islamic_studies": { "original": 999, "effective": 999 }, "arabicmmlu_primary_history": { "original": 102, "effective": 102 }, "arabicmmlu_middle_history": { "original": 203, "effective": 203 }, "arabicmmlu_primary_computer_science": { "original": 190, "effective": 190 }, "arabicmmlu_univ_computer_science": { "original": 64, "effective": 64 }, "arabicmmlu_middle_natural_science": { "original": 242, "effective": 242 }, "arabicmmlu_high_physics": { "original": 255, "effective": 255 }, "arabicmmlu_primary_math": { "original": 409, "effective": 409 }, "arabicmmlu_primary_natural_science": { "original": 336, "effective": 336 }, "arabicmmlu_high_biology": { "original": 1409, "effective": 1409 }, "arabicmmlu_middle_computer_science": { "original": 27, "effective": 27 }, "arabicmmlu_high_computer_science": { "original": 261, "effective": 261 }, "arabicmmlu_arabic_language_(grammar)": { "original": 365, "effective": 365 }, "arabicmmlu_middle_arabic_language": { "original": 27, "effective": 27 }, "arabicmmlu_high_arabic_language": { "original": 390, "effective": 390 }, "arabicmmlu_primary_arabic_language": { "original": 252, "effective": 252 }, "arabicmmlu_arabic_language_(general)": { "original": 612, "effective": 612 } }, "config": { "model": "hf", "model_args": "pretrained=Qwen/Qwen2.5-14B-Instruct,trust_remote_code=True,cache_dir=/tmp,parallelize=False", "model_num_parameters": 14770033664, "model_dtype": "torch.bfloat16", "model_revision": "main", "model_sha": "cf98f3b3bbb457ad9e2bb7baf9a0125b6b88caa8", "batch_size": "auto", "batch_sizes": [ 16 ], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "5e10e017", "date": 1736972201.2878518, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.89\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.48.0", "upper_git_hash": "2e5cd5395faf76fea1afc96dd0f7161a9d3aa145", "tokenizer_pad_token": [ "<|endoftext|>", "151643" ], "tokenizer_eos_token": [ "<|im_end|>", "151645" ], "tokenizer_bos_token": [ null, "None" ], "eot_token_id": 151645, "max_length": 32768, "task_hashes": {}, "model_source": "hf", "model_name": "Qwen/Qwen2.5-14B-Instruct", "model_name_sanitized": "Qwen__Qwen2.5-14B-Instruct", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 7391.591328441, "end_time": 7711.101377987, "total_evaluation_time_seconds": "319.5100495460001" }