{ "results": { "arabicmmlu": { "acc,none": 0.6573503977862332, "acc_stderr,none": 0.003840281351500485, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.7036934950385888, "acc_stderr,none": 0.007378737509782706, "alias": " - Humanities" }, "arabicmmlu_high_history": { "alias": " - High History", "acc,none": 0.5223684210526316, "acc_stderr,none": 0.018130679701241173 }, "arabicmmlu_high_islamic_studies": { "alias": " - High Islamic Studies", "acc,none": 0.7095808383233533, "acc_stderr,none": 0.02487662483308632 }, "arabicmmlu_high_philosophy": { "alias": " - High Philosophy", "acc,none": 0.717948717948718, "acc_stderr,none": 0.07299934324587597 }, "arabicmmlu_islamic_studies": { "alias": " - Islamic Studies", "acc,none": 0.6932707355242567, "acc_stderr,none": 0.01825654959511757 }, "arabicmmlu_middle_history": { "alias": " - Middle History", "acc,none": 0.6995073891625616, "acc_stderr,none": 0.03225799476233485 }, "arabicmmlu_middle_islamic_studies": { "alias": " - Middle Islamic Studies", "acc,none": 0.7310924369747899, "acc_stderr,none": 0.02880139219363128 }, "arabicmmlu_primary_history": { "alias": " - Primary History", "acc,none": 0.6666666666666666, "acc_stderr,none": 0.04690650298201943 }, "arabicmmlu_primary_islamic_studies": { "alias": " - Primary Islamic Studies", "acc,none": 0.8278278278278278, "acc_stderr,none": 0.011950503938766361 }, "arabicmmlu_prof_law": { "alias": " - Prof Law", "acc,none": 0.7547770700636943, "acc_stderr,none": 0.024317432483448788 }, "arabicmmlu_language": { "acc,none": 0.6688942891859052, "acc_stderr,none": 0.011240306622831422, "alias": " - Language" }, "arabicmmlu_arabic_language_(general)": { "alias": " - Arabic Language (General)", "acc,none": 0.7761437908496732, "acc_stderr,none": 0.016863008585416617 }, "arabicmmlu_arabic_language_(grammar)": { "alias": " - Arabic Language (Grammar)", "acc,none": 0.684931506849315, "acc_stderr,none": 0.02434867698272133 }, "arabicmmlu_high_arabic_language": { "alias": " - High Arabic Language", "acc,none": 0.4666666666666667, "acc_stderr,none": 0.02529460802398647 }, "arabicmmlu_middle_arabic_language": { "alias": " - Middle Arabic Language", "acc,none": 0.7037037037037037, "acc_stderr,none": 0.0895511888632576 }, "arabicmmlu_primary_arabic_language": { "alias": " - Primary Arabic Language", "acc,none": 0.6944444444444444, "acc_stderr,none": 0.029075486178441058 }, "arabicmmlu_other": { "acc,none": 0.714975845410628, "acc_stderr,none": 0.009053330450889227, "alias": " - Other" }, "arabicmmlu_driving_test": { "alias": " - Driving Test", "acc,none": 0.7142857142857143, "acc_stderr,none": 0.012987012987013052 }, "arabicmmlu_general_knowledge": { "alias": " - General Knowledge", "acc,none": 0.6921296296296297, "acc_stderr,none": 0.015713476123598046 }, "arabicmmlu_middle_general_knowledge": { "alias": " - Middle General Knowledge", "acc,none": 0.7674418604651163, "acc_stderr,none": 0.0323065408320345 }, "arabicmmlu_primary_general_knowledge": { "alias": " - Primary General Knowledge", "acc,none": 0.7654320987654321, "acc_stderr,none": 0.03339448023577033 }, "arabicmmlu_univ_management": { "alias": " - Univ Management", "acc,none": 0.76, "acc_stderr,none": 0.04964740541926503 }, "arabicmmlu_social_science": { "acc,none": 0.6269977168949772, "acc_stderr,none": 0.008066232886874773, "alias": " - Social Science" }, "arabicmmlu_high_civics": { "alias": " - High Civics", "acc,none": 0.45977011494252873, "acc_stderr,none": 0.053741581963657706 }, "arabicmmlu_high_economics": { "alias": " - High Economics", "acc,none": 0.6444444444444445, "acc_stderr,none": 0.025263833600917815 }, "arabicmmlu_high_geography": { "alias": " - High Geography", "acc,none": 0.5452793834296724, "acc_stderr,none": 0.015462954686403765 }, "arabicmmlu_middle_civics": { "alias": " - Middle Civics", "acc,none": 0.6016949152542372, "acc_stderr,none": 0.0319346503074861 }, "arabicmmlu_middle_economics": { "alias": " - Middle Economics", "acc,none": 0.7816091954022989, "acc_stderr,none": 0.044551545932103705 }, "arabicmmlu_middle_geography": { "alias": " - Middle Geography", "acc,none": 0.6727941176470589, "acc_stderr,none": 0.028501452860396563 }, "arabicmmlu_middle_social_science": { "alias": " - Middle Social Science", "acc,none": 0.5767634854771784, "acc_stderr,none": 0.031892225234464444 }, "arabicmmlu_primary_geography": { "alias": " - Primary Geography", "acc,none": 0.6842105263157895, "acc_stderr,none": 0.06211545730021919 }, "arabicmmlu_primary_social_science": { "alias": " - Primary Social Science", "acc,none": 0.7475177304964539, "acc_stderr,none": 0.016373437342591536 }, "arabicmmlu_univ_accounting": { "alias": " - Univ Accounting", "acc,none": 0.6081081081081081, "acc_stderr,none": 0.05713629906375233 }, "arabicmmlu_univ_economics": { "alias": " - Univ Economics", "acc,none": 0.6131386861313869, "acc_stderr,none": 0.04176260268579586 }, "arabicmmlu_univ_political_science": { "alias": " - Univ Political Science", "acc,none": 0.6285714285714286, "acc_stderr,none": 0.033422722963748645 }, "arabicmmlu_stem": { "acc,none": 0.5872220482305043, "acc_stderr,none": 0.008392168384789572, "alias": " - STEM" }, "arabicmmlu_high_biology": { "alias": " - High Biology", "acc,none": 0.48190205819730303, "acc_stderr,none": 0.013316313061005655 }, "arabicmmlu_high_computer_science": { "alias": " - High Computer Science", "acc,none": 0.6436781609195402, "acc_stderr,none": 0.029700853786923786 }, "arabicmmlu_high_physics": { "alias": " - High Physics", "acc,none": 0.4627450980392157, "acc_stderr,none": 0.031285582720181296 }, "arabicmmlu_middle_computer_science": { "alias": " - Middle Computer Science", "acc,none": 0.9259259259259259, "acc_stderr,none": 0.05136112928011382 }, "arabicmmlu_middle_natural_science": { "alias": " - Middle Natural Science", "acc,none": 0.768595041322314, "acc_stderr,none": 0.027166056421232626 }, "arabicmmlu_primary_computer_science": { "alias": " - Primary Computer Science", "acc,none": 0.7526315789473684, "acc_stderr,none": 0.03138574519882399 }, "arabicmmlu_primary_math": { "alias": " - Primary Math", "acc,none": 0.5696821515892421, "acc_stderr,none": 0.024512121738684653 }, "arabicmmlu_primary_natural_science": { "alias": " - Primary Natural Science", "acc,none": 0.8363095238095238, "acc_stderr,none": 0.020214957089599812 }, "arabicmmlu_univ_computer_science": { "alias": " - Univ Computer Science", "acc,none": 0.65625, "acc_stderr,none": 0.05983919423477113 } }, "groups": { "arabicmmlu": { "acc,none": 0.6573503977862332, "acc_stderr,none": 0.003840281351500485, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.7036934950385888, "acc_stderr,none": 0.007378737509782706, "alias": " - Humanities" }, "arabicmmlu_language": { "acc,none": 0.6688942891859052, "acc_stderr,none": 0.011240306622831422, "alias": " - Language" }, "arabicmmlu_other": { "acc,none": 0.714975845410628, "acc_stderr,none": 0.009053330450889227, "alias": " - Other" }, "arabicmmlu_social_science": { "acc,none": 0.6269977168949772, "acc_stderr,none": 0.008066232886874773, "alias": " - Social Science" }, "arabicmmlu_stem": { "acc,none": 0.5872220482305043, "acc_stderr,none": 0.008392168384789572, "alias": " - STEM" } }, "group_subtasks": { "arabicmmlu_language": [ "arabicmmlu_primary_arabic_language", "arabicmmlu_middle_arabic_language", "arabicmmlu_high_arabic_language", "arabicmmlu_arabic_language_(grammar)", "arabicmmlu_arabic_language_(general)" ], "arabicmmlu_stem": [ "arabicmmlu_middle_computer_science", "arabicmmlu_primary_math", "arabicmmlu_high_biology", "arabicmmlu_high_physics", "arabicmmlu_univ_computer_science", "arabicmmlu_high_computer_science", "arabicmmlu_primary_natural_science", "arabicmmlu_primary_computer_science", "arabicmmlu_middle_natural_science" ], "arabicmmlu_humanities": [ "arabicmmlu_high_philosophy", "arabicmmlu_prof_law", "arabicmmlu_middle_history", "arabicmmlu_high_islamic_studies", "arabicmmlu_primary_history", "arabicmmlu_islamic_studies", "arabicmmlu_middle_islamic_studies", "arabicmmlu_high_history", "arabicmmlu_primary_islamic_studies" ], "arabicmmlu_social_science": [ "arabicmmlu_univ_political_science", "arabicmmlu_primary_social_science", "arabicmmlu_middle_social_science", "arabicmmlu_middle_civics", "arabicmmlu_middle_geography", "arabicmmlu_middle_economics", "arabicmmlu_primary_geography", "arabicmmlu_high_economics", "arabicmmlu_high_civics", "arabicmmlu_univ_accounting", "arabicmmlu_univ_economics", "arabicmmlu_high_geography" ], "arabicmmlu_other": [ "arabicmmlu_univ_management", "arabicmmlu_primary_general_knowledge", "arabicmmlu_middle_general_knowledge", "arabicmmlu_driving_test", "arabicmmlu_general_knowledge" ], "arabicmmlu": [ "arabicmmlu_other", "arabicmmlu_social_science", "arabicmmlu_humanities", "arabicmmlu_stem", "arabicmmlu_language" ] }, "configs": { "arabicmmlu_arabic_language_(general)": { "task": "arabicmmlu_arabic_language_(general)", "task_alias": "Arabic Language (General)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (General)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_arabic_language_(grammar)": { "task": "arabicmmlu_arabic_language_(grammar)", "task_alias": "Arabic Language (Grammar)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (Grammar)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_driving_test": { "task": "arabicmmlu_driving_test", "task_alias": "Driving Test", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Driving Test", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_general_knowledge": { "task": "arabicmmlu_general_knowledge", "task_alias": "General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_arabic_language": { "task": "arabicmmlu_high_arabic_language", "task_alias": "High Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_biology": { "task": "arabicmmlu_high_biology", "task_alias": "High Biology", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Biology", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_civics": { "task": "arabicmmlu_high_civics", "task_alias": "High Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_computer_science": { "task": "arabicmmlu_high_computer_science", "task_alias": "High Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_economics": { "task": "arabicmmlu_high_economics", "task_alias": "High Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_geography": { "task": "arabicmmlu_high_geography", "task_alias": "High Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_history": { "task": "arabicmmlu_high_history", "task_alias": "High History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_islamic_studies": { "task": "arabicmmlu_high_islamic_studies", "task_alias": "High Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_philosophy": { "task": "arabicmmlu_high_philosophy", "task_alias": "High Philosophy", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Philosophy", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_physics": { "task": "arabicmmlu_high_physics", "task_alias": "High Physics", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Physics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_islamic_studies": { "task": "arabicmmlu_islamic_studies", "task_alias": "Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_arabic_language": { "task": "arabicmmlu_middle_arabic_language", "task_alias": "Middle Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_civics": { "task": "arabicmmlu_middle_civics", "task_alias": "Middle Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_computer_science": { "task": "arabicmmlu_middle_computer_science", "task_alias": "Middle Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_economics": { "task": "arabicmmlu_middle_economics", "task_alias": "Middle Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_general_knowledge": { "task": "arabicmmlu_middle_general_knowledge", "task_alias": "Middle General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_geography": { "task": "arabicmmlu_middle_geography", "task_alias": "Middle Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_history": { "task": "arabicmmlu_middle_history", "task_alias": "Middle History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_islamic_studies": { "task": "arabicmmlu_middle_islamic_studies", "task_alias": "Middle Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_natural_science": { "task": "arabicmmlu_middle_natural_science", "task_alias": "Middle Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_social_science": { "task": "arabicmmlu_middle_social_science", "task_alias": "Middle Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_arabic_language": { "task": "arabicmmlu_primary_arabic_language", "task_alias": "Primary Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_computer_science": { "task": "arabicmmlu_primary_computer_science", "task_alias": "Primary Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_general_knowledge": { "task": "arabicmmlu_primary_general_knowledge", "task_alias": "Primary General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_geography": { "task": "arabicmmlu_primary_geography", "task_alias": "Primary Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_history": { "task": "arabicmmlu_primary_history", "task_alias": "Primary History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_islamic_studies": { "task": "arabicmmlu_primary_islamic_studies", "task_alias": "Primary Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_math": { "task": "arabicmmlu_primary_math", "task_alias": "Primary Math", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Math", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_natural_science": { "task": "arabicmmlu_primary_natural_science", "task_alias": "Primary Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_social_science": { "task": "arabicmmlu_primary_social_science", "task_alias": "Primary Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_prof_law": { "task": "arabicmmlu_prof_law", "task_alias": "Prof Law", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Prof Law", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_accounting": { "task": "arabicmmlu_univ_accounting", "task_alias": "Univ Accounting", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Accounting", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_computer_science": { "task": "arabicmmlu_univ_computer_science", "task_alias": "Univ Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_economics": { "task": "arabicmmlu_univ_economics", "task_alias": "Univ Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_management": { "task": "arabicmmlu_univ_management", "task_alias": "Univ Management", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Management", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_political_science": { "task": "arabicmmlu_univ_political_science", "task_alias": "Univ Political Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Political Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "arabicmmlu": 0, "arabicmmlu_arabic_language_(general)": 0.0, "arabicmmlu_arabic_language_(grammar)": 0.0, "arabicmmlu_driving_test": 0.0, "arabicmmlu_general_knowledge": 0.0, "arabicmmlu_high_arabic_language": 0.0, "arabicmmlu_high_biology": 0.0, "arabicmmlu_high_civics": 0.0, "arabicmmlu_high_computer_science": 0.0, "arabicmmlu_high_economics": 0.0, "arabicmmlu_high_geography": 0.0, "arabicmmlu_high_history": 0.0, "arabicmmlu_high_islamic_studies": 0.0, "arabicmmlu_high_philosophy": 0.0, "arabicmmlu_high_physics": 0.0, "arabicmmlu_humanities": 0, "arabicmmlu_islamic_studies": 0.0, "arabicmmlu_language": 0, "arabicmmlu_middle_arabic_language": 0.0, "arabicmmlu_middle_civics": 0.0, "arabicmmlu_middle_computer_science": 0.0, "arabicmmlu_middle_economics": 0.0, "arabicmmlu_middle_general_knowledge": 0.0, "arabicmmlu_middle_geography": 0.0, "arabicmmlu_middle_history": 0.0, "arabicmmlu_middle_islamic_studies": 0.0, "arabicmmlu_middle_natural_science": 0.0, "arabicmmlu_middle_social_science": 0.0, "arabicmmlu_other": 0, "arabicmmlu_primary_arabic_language": 0.0, "arabicmmlu_primary_computer_science": 0.0, "arabicmmlu_primary_general_knowledge": 0.0, "arabicmmlu_primary_geography": 0.0, "arabicmmlu_primary_history": 0.0, "arabicmmlu_primary_islamic_studies": 0.0, "arabicmmlu_primary_math": 0.0, "arabicmmlu_primary_natural_science": 0.0, "arabicmmlu_primary_social_science": 0.0, "arabicmmlu_prof_law": 0.0, "arabicmmlu_social_science": 0, "arabicmmlu_stem": 0, "arabicmmlu_univ_accounting": 0.0, "arabicmmlu_univ_computer_science": 0.0, "arabicmmlu_univ_economics": 0.0, "arabicmmlu_univ_management": 0.0, "arabicmmlu_univ_political_science": 0.0 }, "n-shot": { "arabicmmlu_arabic_language_(general)": 0, "arabicmmlu_arabic_language_(grammar)": 0, "arabicmmlu_driving_test": 0, "arabicmmlu_general_knowledge": 0, "arabicmmlu_high_arabic_language": 0, "arabicmmlu_high_biology": 0, "arabicmmlu_high_civics": 0, "arabicmmlu_high_computer_science": 0, "arabicmmlu_high_economics": 0, "arabicmmlu_high_geography": 0, "arabicmmlu_high_history": 0, "arabicmmlu_high_islamic_studies": 0, "arabicmmlu_high_philosophy": 0, "arabicmmlu_high_physics": 0, "arabicmmlu_islamic_studies": 0, "arabicmmlu_middle_arabic_language": 0, "arabicmmlu_middle_civics": 0, "arabicmmlu_middle_computer_science": 0, "arabicmmlu_middle_economics": 0, "arabicmmlu_middle_general_knowledge": 0, "arabicmmlu_middle_geography": 0, "arabicmmlu_middle_history": 0, "arabicmmlu_middle_islamic_studies": 0, "arabicmmlu_middle_natural_science": 0, "arabicmmlu_middle_social_science": 0, "arabicmmlu_primary_arabic_language": 0, "arabicmmlu_primary_computer_science": 0, "arabicmmlu_primary_general_knowledge": 0, "arabicmmlu_primary_geography": 0, "arabicmmlu_primary_history": 0, "arabicmmlu_primary_islamic_studies": 0, "arabicmmlu_primary_math": 0, "arabicmmlu_primary_natural_science": 0, "arabicmmlu_primary_social_science": 0, "arabicmmlu_prof_law": 0, "arabicmmlu_univ_accounting": 0, "arabicmmlu_univ_computer_science": 0, "arabicmmlu_univ_economics": 0, "arabicmmlu_univ_management": 0, "arabicmmlu_univ_political_science": 0 }, "higher_is_better": { "arabicmmlu": { "acc": true }, "arabicmmlu_arabic_language_(general)": { "acc": true }, "arabicmmlu_arabic_language_(grammar)": { "acc": true }, "arabicmmlu_driving_test": { "acc": true }, "arabicmmlu_general_knowledge": { "acc": true }, "arabicmmlu_high_arabic_language": { "acc": true }, "arabicmmlu_high_biology": { "acc": true }, "arabicmmlu_high_civics": { "acc": true }, "arabicmmlu_high_computer_science": { "acc": true }, "arabicmmlu_high_economics": { "acc": true }, "arabicmmlu_high_geography": { "acc": true }, "arabicmmlu_high_history": { "acc": true }, "arabicmmlu_high_islamic_studies": { "acc": true }, "arabicmmlu_high_philosophy": { "acc": true }, "arabicmmlu_high_physics": { "acc": true }, "arabicmmlu_humanities": { "acc": true }, "arabicmmlu_islamic_studies": { "acc": true }, "arabicmmlu_language": { "acc": true }, "arabicmmlu_middle_arabic_language": { "acc": true }, "arabicmmlu_middle_civics": { "acc": true }, "arabicmmlu_middle_computer_science": { "acc": true }, "arabicmmlu_middle_economics": { "acc": true }, "arabicmmlu_middle_general_knowledge": { "acc": true }, "arabicmmlu_middle_geography": { "acc": true }, "arabicmmlu_middle_history": { "acc": true }, "arabicmmlu_middle_islamic_studies": { "acc": true }, "arabicmmlu_middle_natural_science": { "acc": true }, "arabicmmlu_middle_social_science": { "acc": true }, "arabicmmlu_other": { "acc": true }, "arabicmmlu_primary_arabic_language": { "acc": true }, "arabicmmlu_primary_computer_science": { "acc": true }, "arabicmmlu_primary_general_knowledge": { "acc": true }, "arabicmmlu_primary_geography": { "acc": true }, "arabicmmlu_primary_history": { "acc": true }, "arabicmmlu_primary_islamic_studies": { "acc": true }, "arabicmmlu_primary_math": { "acc": true }, "arabicmmlu_primary_natural_science": { "acc": true }, "arabicmmlu_primary_social_science": { "acc": true }, "arabicmmlu_prof_law": { "acc": true }, "arabicmmlu_social_science": { "acc": true }, "arabicmmlu_stem": { "acc": true }, "arabicmmlu_univ_accounting": { "acc": true }, "arabicmmlu_univ_computer_science": { "acc": true }, "arabicmmlu_univ_economics": { "acc": true }, "arabicmmlu_univ_management": { "acc": true }, "arabicmmlu_univ_political_science": { "acc": true } }, "n-samples": { "arabicmmlu_univ_management": { "original": 75, "effective": 75 }, "arabicmmlu_primary_general_knowledge": { "original": 162, "effective": 162 }, "arabicmmlu_middle_general_knowledge": { "original": 172, "effective": 172 }, "arabicmmlu_driving_test": { "original": 1211, "effective": 1211 }, "arabicmmlu_general_knowledge": { "original": 864, "effective": 864 }, "arabicmmlu_univ_political_science": { "original": 210, "effective": 210 }, "arabicmmlu_primary_social_science": { "original": 705, "effective": 705 }, "arabicmmlu_middle_social_science": { "original": 241, "effective": 241 }, "arabicmmlu_middle_civics": { "original": 236, "effective": 236 }, "arabicmmlu_middle_geography": { "original": 272, "effective": 272 }, "arabicmmlu_middle_economics": { "original": 87, "effective": 87 }, "arabicmmlu_primary_geography": { "original": 57, "effective": 57 }, "arabicmmlu_high_economics": { "original": 360, "effective": 360 }, "arabicmmlu_high_civics": { "original": 87, "effective": 87 }, "arabicmmlu_univ_accounting": { "original": 74, "effective": 74 }, "arabicmmlu_univ_economics": { "original": 137, "effective": 137 }, "arabicmmlu_high_geography": { "original": 1038, "effective": 1038 }, "arabicmmlu_high_philosophy": { "original": 39, "effective": 39 }, "arabicmmlu_prof_law": { "original": 314, "effective": 314 }, "arabicmmlu_middle_history": { "original": 203, "effective": 203 }, "arabicmmlu_high_islamic_studies": { "original": 334, "effective": 334 }, "arabicmmlu_primary_history": { "original": 102, "effective": 102 }, "arabicmmlu_islamic_studies": { "original": 639, "effective": 639 }, "arabicmmlu_middle_islamic_studies": { "original": 238, "effective": 238 }, "arabicmmlu_high_history": { "original": 760, "effective": 760 }, "arabicmmlu_primary_islamic_studies": { "original": 999, "effective": 999 }, "arabicmmlu_middle_computer_science": { "original": 27, "effective": 27 }, "arabicmmlu_primary_math": { "original": 409, "effective": 409 }, "arabicmmlu_high_biology": { "original": 1409, "effective": 1409 }, "arabicmmlu_high_physics": { "original": 255, "effective": 255 }, "arabicmmlu_univ_computer_science": { "original": 64, "effective": 64 }, "arabicmmlu_high_computer_science": { "original": 261, "effective": 261 }, "arabicmmlu_primary_natural_science": { "original": 336, "effective": 336 }, "arabicmmlu_primary_computer_science": { "original": 190, "effective": 190 }, "arabicmmlu_middle_natural_science": { "original": 242, "effective": 242 }, "arabicmmlu_primary_arabic_language": { "original": 252, "effective": 252 }, "arabicmmlu_middle_arabic_language": { "original": 27, "effective": 27 }, "arabicmmlu_high_arabic_language": { "original": 390, "effective": 390 }, "arabicmmlu_arabic_language_(grammar)": { "original": 365, "effective": 365 }, "arabicmmlu_arabic_language_(general)": { "original": 612, "effective": 612 } }, "config": { "model": "vllm", "model_args": "pretrained=inceptionai/jais-adapted-70b-chat,tensor_parallel_size=4,data_parallel_size=2,gpu_memory_utilization=0.8,download_dir=/tmp", "batch_size": 1, "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "8e1bd48d", "date": 1735742245.74136, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 96\nOn-line CPU(s) list: 0-95\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V12 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 2\nStepping: 0\nBogoMIPS: 4890.88\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru arat umip rdpid\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 3 MiB (96 instances)\nL1i cache: 3 MiB (96 instances)\nL2 cache: 48 MiB (96 instances)\nL3 cache: 384 MiB (24 instances)\nNUMA node(s): 4\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nNUMA node2 CPU(s): 48-71\nNUMA node3 CPU(s): 72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.47.1", "upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", "tokenizer_pad_token": [ "", "0" ], "tokenizer_eos_token": [ "", "2" ], "tokenizer_bos_token": [ "", "1" ], "eot_token_id": 2, "max_length": 4096, "task_hashes": {}, "model_source": "vllm", "model_name": "inceptionai/jais-adapted-70b-chat", "model_name_sanitized": "inceptionai__jais-adapted-70b-chat", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 157154.208849809, "end_time": 157971.604345979, "total_evaluation_time_seconds": "817.3954961700074" }