{ "results": { "arabicmmlu": { "acc,none": 0.4975441023867174, "acc_stderr,none": 0.004073384874245624, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.5173649393605292, "acc_stderr,none": 0.008059301844728773, "alias": " - Humanities" }, "arabicmmlu_high_history": { "alias": " - High History", "acc,none": 0.3671052631578947, "acc_stderr,none": 0.01749605598016935 }, "arabicmmlu_high_islamic_studies": { "alias": " - High Islamic Studies", "acc,none": 0.5329341317365269, "acc_stderr,none": 0.027340327767287394 }, "arabicmmlu_high_philosophy": { "alias": " - High Philosophy", "acc,none": 0.5384615384615384, "acc_stderr,none": 0.0808703820058226 }, "arabicmmlu_islamic_studies": { "alias": " - Islamic Studies", "acc,none": 0.3974960876369327, "acc_stderr,none": 0.019374746350863278 }, "arabicmmlu_middle_history": { "alias": " - Middle History", "acc,none": 0.5812807881773399, "acc_stderr,none": 0.03471192860518469 }, "arabicmmlu_middle_islamic_studies": { "alias": " - Middle Islamic Studies", "acc,none": 0.6008403361344538, "acc_stderr,none": 0.031811100324139245 }, "arabicmmlu_primary_history": { "alias": " - Primary History", "acc,none": 0.49019607843137253, "acc_stderr,none": 0.04974229460422817 }, "arabicmmlu_primary_islamic_studies": { "alias": " - Primary Islamic Studies", "acc,none": 0.6726726726726727, "acc_stderr,none": 0.014853464205696236 }, "arabicmmlu_prof_law": { "alias": " - Prof Law", "acc,none": 0.5159235668789809, "acc_stderr,none": 0.028247335253768956 }, "arabicmmlu_language": { "acc,none": 0.5018226002430134, "acc_stderr,none": 0.012147423836099071, "alias": " - Language" }, "arabicmmlu_arabic_language_(general)": { "alias": " - Arabic Language (General)", "acc,none": 0.5833333333333334, "acc_stderr,none": 0.01994491413687358 }, "arabicmmlu_arabic_language_(grammar)": { "alias": " - Arabic Language (Grammar)", "acc,none": 0.5178082191780822, "acc_stderr,none": 0.02619049337476246 }, "arabicmmlu_high_arabic_language": { "alias": " - High Arabic Language", "acc,none": 0.35384615384615387, "acc_stderr,none": 0.024243783994062167 }, "arabicmmlu_middle_arabic_language": { "alias": " - Middle Arabic Language", "acc,none": 0.5925925925925926, "acc_stderr,none": 0.09636202008710973 }, "arabicmmlu_primary_arabic_language": { "alias": " - Primary Arabic Language", "acc,none": 0.5, "acc_stderr,none": 0.031559720154890156 }, "arabicmmlu_other": { "acc,none": 0.5233494363929146, "acc_stderr,none": 0.009987155759790199, "alias": " - Other" }, "arabicmmlu_driving_test": { "alias": " - Driving Test", "acc,none": 0.5408753096614368, "acc_stderr,none": 0.014325876981508813 }, "arabicmmlu_general_knowledge": { "alias": " - General Knowledge", "acc,none": 0.4664351851851852, "acc_stderr,none": 0.016981804836010583 }, "arabicmmlu_middle_general_knowledge": { "alias": " - Middle General Knowledge", "acc,none": 0.5581395348837209, "acc_stderr,none": 0.03797658515942914 }, "arabicmmlu_primary_general_knowledge": { "alias": " - Primary General Knowledge", "acc,none": 0.6234567901234568, "acc_stderr,none": 0.038185427041450865 }, "arabicmmlu_univ_management": { "alias": " - Univ Management", "acc,none": 0.6, "acc_stderr,none": 0.05694947974514993 }, "arabicmmlu_social_science": { "acc,none": 0.4877283105022831, "acc_stderr,none": 0.00829476633798559, "alias": " - Social Science" }, "arabicmmlu_high_civics": { "alias": " - High Civics", "acc,none": 0.367816091954023, "acc_stderr,none": 0.05199814559011102 }, "arabicmmlu_high_economics": { "alias": " - High Economics", "acc,none": 0.49166666666666664, "acc_stderr,none": 0.026385325306307095 }, "arabicmmlu_high_geography": { "alias": " - High Geography", "acc,none": 0.3978805394990366, "acc_stderr,none": 0.015199465039911994 }, "arabicmmlu_middle_civics": { "alias": " - Middle Civics", "acc,none": 0.4152542372881356, "acc_stderr,none": 0.03214449793774544 }, "arabicmmlu_middle_economics": { "alias": " - Middle Economics", "acc,none": 0.735632183908046, "acc_stderr,none": 0.04755382188278442 }, "arabicmmlu_middle_geography": { "alias": " - Middle Geography", "acc,none": 0.47794117647058826, "acc_stderr,none": 0.030343264224213514 }, "arabicmmlu_middle_social_science": { "alias": " - Middle Social Science", "acc,none": 0.43568464730290457, "acc_stderr,none": 0.032006739876642154 }, "arabicmmlu_primary_geography": { "alias": " - Primary Geography", "acc,none": 0.5263157894736842, "acc_stderr,none": 0.06672270432067239 }, "arabicmmlu_primary_social_science": { "alias": " - Primary Social Science", "acc,none": 0.6411347517730497, "acc_stderr,none": 0.018078151909972997 }, "arabicmmlu_univ_accounting": { "alias": " - Univ Accounting", "acc,none": 0.4864864864864865, "acc_stderr,none": 0.05849919621886871 }, "arabicmmlu_univ_economics": { "alias": " - Univ Economics", "acc,none": 0.49635036496350365, "acc_stderr,none": 0.04287350410390777 }, "arabicmmlu_univ_political_science": { "alias": " - Univ Political Science", "acc,none": 0.49523809523809526, "acc_stderr,none": 0.034584154644211426 }, "arabicmmlu_stem": { "acc,none": 0.46351393673661134, "acc_stderr,none": 0.00858845350484014, "alias": " - STEM" }, "arabicmmlu_high_biology": { "alias": " - High Biology", "acc,none": 0.3860894251242016, "acc_stderr,none": 0.012974636011804944 }, "arabicmmlu_high_computer_science": { "alias": " - High Computer Science", "acc,none": 0.4827586206896552, "acc_stderr,none": 0.030990242561135053 }, "arabicmmlu_high_physics": { "alias": " - High Physics", "acc,none": 0.30196078431372547, "acc_stderr,none": 0.02880701939354399 }, "arabicmmlu_middle_computer_science": { "alias": " - Middle Computer Science", "acc,none": 0.6666666666666666, "acc_stderr,none": 0.09245003270420485 }, "arabicmmlu_middle_natural_science": { "alias": " - Middle Natural Science", "acc,none": 0.5826446280991735, "acc_stderr,none": 0.031764816874392546 }, "arabicmmlu_primary_computer_science": { "alias": " - Primary Computer Science", "acc,none": 0.6631578947368421, "acc_stderr,none": 0.03437880340748323 }, "arabicmmlu_primary_math": { "alias": " - Primary Math", "acc,none": 0.44987775061124696, "acc_stderr,none": 0.024629000128784228 }, "arabicmmlu_primary_natural_science": { "alias": " - Primary Natural Science", "acc,none": 0.6845238095238095, "acc_stderr,none": 0.02538955971347752 }, "arabicmmlu_univ_computer_science": { "alias": " - Univ Computer Science", "acc,none": 0.53125, "acc_stderr,none": 0.06287092313773097 } }, "groups": { "arabicmmlu": { "acc,none": 0.4975441023867174, "acc_stderr,none": 0.004073384874245624, "alias": "arabicmmlu" }, "arabicmmlu_humanities": { "acc,none": 0.5173649393605292, "acc_stderr,none": 0.008059301844728773, "alias": " - Humanities" }, "arabicmmlu_language": { "acc,none": 0.5018226002430134, "acc_stderr,none": 0.012147423836099071, "alias": " - Language" }, "arabicmmlu_other": { "acc,none": 0.5233494363929146, "acc_stderr,none": 0.009987155759790199, "alias": " - Other" }, "arabicmmlu_social_science": { "acc,none": 0.4877283105022831, "acc_stderr,none": 0.00829476633798559, "alias": " - Social Science" }, "arabicmmlu_stem": { "acc,none": 0.46351393673661134, "acc_stderr,none": 0.00858845350484014, "alias": " - STEM" } }, "group_subtasks": { "arabicmmlu_language": [ "arabicmmlu_primary_arabic_language", "arabicmmlu_middle_arabic_language", "arabicmmlu_high_arabic_language", "arabicmmlu_arabic_language_(general)", "arabicmmlu_arabic_language_(grammar)" ], "arabicmmlu_stem": [ "arabicmmlu_primary_computer_science", "arabicmmlu_univ_computer_science", "arabicmmlu_high_computer_science", "arabicmmlu_primary_natural_science", "arabicmmlu_primary_math", "arabicmmlu_high_biology", "arabicmmlu_high_physics", "arabicmmlu_middle_computer_science", "arabicmmlu_middle_natural_science" ], "arabicmmlu_humanities": [ "arabicmmlu_middle_islamic_studies", "arabicmmlu_primary_islamic_studies", "arabicmmlu_islamic_studies", "arabicmmlu_middle_history", "arabicmmlu_high_philosophy", "arabicmmlu_high_history", "arabicmmlu_high_islamic_studies", "arabicmmlu_primary_history", "arabicmmlu_prof_law" ], "arabicmmlu_social_science": [ "arabicmmlu_middle_geography", "arabicmmlu_univ_economics", "arabicmmlu_middle_social_science", "arabicmmlu_univ_political_science", "arabicmmlu_univ_accounting", "arabicmmlu_high_geography", "arabicmmlu_high_civics", "arabicmmlu_primary_geography", "arabicmmlu_middle_civics", "arabicmmlu_primary_social_science", "arabicmmlu_middle_economics", "arabicmmlu_high_economics" ], "arabicmmlu_other": [ "arabicmmlu_univ_management", "arabicmmlu_primary_general_knowledge", "arabicmmlu_general_knowledge", "arabicmmlu_driving_test", "arabicmmlu_middle_general_knowledge" ], "arabicmmlu": [ "arabicmmlu_other", "arabicmmlu_social_science", "arabicmmlu_humanities", "arabicmmlu_stem", "arabicmmlu_language" ] }, "configs": { "arabicmmlu_arabic_language_(general)": { "task": "arabicmmlu_arabic_language_(general)", "task_alias": "Arabic Language (General)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (General)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_arabic_language_(grammar)": { "task": "arabicmmlu_arabic_language_(grammar)", "task_alias": "Arabic Language (Grammar)", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Arabic Language (Grammar)", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_driving_test": { "task": "arabicmmlu_driving_test", "task_alias": "Driving Test", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Driving Test", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_general_knowledge": { "task": "arabicmmlu_general_knowledge", "task_alias": "General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_arabic_language": { "task": "arabicmmlu_high_arabic_language", "task_alias": "High Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_biology": { "task": "arabicmmlu_high_biology", "task_alias": "High Biology", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Biology", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_civics": { "task": "arabicmmlu_high_civics", "task_alias": "High Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_computer_science": { "task": "arabicmmlu_high_computer_science", "task_alias": "High Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_economics": { "task": "arabicmmlu_high_economics", "task_alias": "High Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_geography": { "task": "arabicmmlu_high_geography", "task_alias": "High Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_history": { "task": "arabicmmlu_high_history", "task_alias": "High History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_islamic_studies": { "task": "arabicmmlu_high_islamic_studies", "task_alias": "High Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_philosophy": { "task": "arabicmmlu_high_philosophy", "task_alias": "High Philosophy", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Philosophy", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_high_physics": { "task": "arabicmmlu_high_physics", "task_alias": "High Physics", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "High Physics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_islamic_studies": { "task": "arabicmmlu_islamic_studies", "task_alias": "Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_arabic_language": { "task": "arabicmmlu_middle_arabic_language", "task_alias": "Middle Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_civics": { "task": "arabicmmlu_middle_civics", "task_alias": "Middle Civics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Civics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_computer_science": { "task": "arabicmmlu_middle_computer_science", "task_alias": "Middle Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_economics": { "task": "arabicmmlu_middle_economics", "task_alias": "Middle Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_general_knowledge": { "task": "arabicmmlu_middle_general_knowledge", "task_alias": "Middle General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_geography": { "task": "arabicmmlu_middle_geography", "task_alias": "Middle Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_history": { "task": "arabicmmlu_middle_history", "task_alias": "Middle History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_islamic_studies": { "task": "arabicmmlu_middle_islamic_studies", "task_alias": "Middle Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_natural_science": { "task": "arabicmmlu_middle_natural_science", "task_alias": "Middle Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_middle_social_science": { "task": "arabicmmlu_middle_social_science", "task_alias": "Middle Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Middle Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_arabic_language": { "task": "arabicmmlu_primary_arabic_language", "task_alias": "Primary Arabic Language", "tag": "arabicmmlu_language_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Arabic Language", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_computer_science": { "task": "arabicmmlu_primary_computer_science", "task_alias": "Primary Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_general_knowledge": { "task": "arabicmmlu_primary_general_knowledge", "task_alias": "Primary General Knowledge", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary General Knowledge", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_geography": { "task": "arabicmmlu_primary_geography", "task_alias": "Primary Geography", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Geography", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_history": { "task": "arabicmmlu_primary_history", "task_alias": "Primary History", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary History", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_islamic_studies": { "task": "arabicmmlu_primary_islamic_studies", "task_alias": "Primary Islamic Studies", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Islamic Studies", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_math": { "task": "arabicmmlu_primary_math", "task_alias": "Primary Math", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Math", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_natural_science": { "task": "arabicmmlu_primary_natural_science", "task_alias": "Primary Natural Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Natural Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_primary_social_science": { "task": "arabicmmlu_primary_social_science", "task_alias": "Primary Social Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Primary Social Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_prof_law": { "task": "arabicmmlu_prof_law", "task_alias": "Prof Law", "tag": "arabicmmlu_humanities_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Prof Law", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_accounting": { "task": "arabicmmlu_univ_accounting", "task_alias": "Univ Accounting", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Accounting", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_computer_science": { "task": "arabicmmlu_univ_computer_science", "task_alias": "Univ Computer Science", "tag": "arabicmmlu_stem_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Computer Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_economics": { "task": "arabicmmlu_univ_economics", "task_alias": "Univ Economics", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Economics", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_management": { "task": "arabicmmlu_univ_management", "task_alias": "Univ Management", "tag": "arabicmmlu_other_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Management", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } }, "arabicmmlu_univ_political_science": { "task": "arabicmmlu_univ_political_science", "task_alias": "Univ Political Science", "tag": "arabicmmlu_social_science_tasks", "dataset_path": "yazeed7/ArabicMMLU", "dataset_name": "Univ Political Science", "test_split": "test", "fewshot_split": "dev", "doc_to_text": "def doc_to_text(doc):\n \"\"\"\n Refactoring `prepare_data_en` to fit with the lm harness framework.\n https://github.com/mbzuai-nlp/ArabicMMLU/blob/main/util_prompt.py\n \"\"\"\n\n level = \"\" if not doc[\"Level\"] else \" for \" + level_en[doc[\"Level\"]]\n country = \"\" if not doc[\"Country\"] else \" in \" + doc[\"Country\"]\n main_meta_data = f\"{doc['Subject']} question{level}{country}\"\n\n question = (\n doc[\"Question\"]\n if doc[\"Context\"] == \"\"\n else f\"{doc['Context']}\\n\\n{doc['Question']}\"\n )\n\n options = []\n for i, opt in enumerate(\n [\"Option 1\", \"Option 2\", \"Option 3\", \"Option 4\", \"Option 5\"]\n ):\n if not doc[opt]:\n break\n options.append(f\"{alpa[i]} {doc[opt]}\")\n\n doc_text = PROMPT.format(main_meta_data, question, \"\\n\".join(options))\n\n return doc_text\n", "doc_to_target": "Answer Key", "doc_to_choice": "def doc_to_choice(doc):\n return [alpa[i][0] for i in range(5) if doc[f\"Option {i+1}\"]]\n", "description": "", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 0, "metric_list": [ { "metric": "acc", "aggregation": "mean", "higher_is_better": true } ], "output_type": "multiple_choice", "repeats": 1, "should_decontaminate": false, "metadata": { "version": 0.0 } } }, "versions": { "arabicmmlu": 0, "arabicmmlu_arabic_language_(general)": 0.0, "arabicmmlu_arabic_language_(grammar)": 0.0, "arabicmmlu_driving_test": 0.0, "arabicmmlu_general_knowledge": 0.0, "arabicmmlu_high_arabic_language": 0.0, "arabicmmlu_high_biology": 0.0, "arabicmmlu_high_civics": 0.0, "arabicmmlu_high_computer_science": 0.0, "arabicmmlu_high_economics": 0.0, "arabicmmlu_high_geography": 0.0, "arabicmmlu_high_history": 0.0, "arabicmmlu_high_islamic_studies": 0.0, "arabicmmlu_high_philosophy": 0.0, "arabicmmlu_high_physics": 0.0, "arabicmmlu_humanities": 0, "arabicmmlu_islamic_studies": 0.0, "arabicmmlu_language": 0, "arabicmmlu_middle_arabic_language": 0.0, "arabicmmlu_middle_civics": 0.0, "arabicmmlu_middle_computer_science": 0.0, "arabicmmlu_middle_economics": 0.0, "arabicmmlu_middle_general_knowledge": 0.0, "arabicmmlu_middle_geography": 0.0, "arabicmmlu_middle_history": 0.0, "arabicmmlu_middle_islamic_studies": 0.0, "arabicmmlu_middle_natural_science": 0.0, "arabicmmlu_middle_social_science": 0.0, "arabicmmlu_other": 0, "arabicmmlu_primary_arabic_language": 0.0, "arabicmmlu_primary_computer_science": 0.0, "arabicmmlu_primary_general_knowledge": 0.0, "arabicmmlu_primary_geography": 0.0, "arabicmmlu_primary_history": 0.0, "arabicmmlu_primary_islamic_studies": 0.0, "arabicmmlu_primary_math": 0.0, "arabicmmlu_primary_natural_science": 0.0, "arabicmmlu_primary_social_science": 0.0, "arabicmmlu_prof_law": 0.0, "arabicmmlu_social_science": 0, "arabicmmlu_stem": 0, "arabicmmlu_univ_accounting": 0.0, "arabicmmlu_univ_computer_science": 0.0, "arabicmmlu_univ_economics": 0.0, "arabicmmlu_univ_management": 0.0, "arabicmmlu_univ_political_science": 0.0 }, "n-shot": { "arabicmmlu_arabic_language_(general)": 0, "arabicmmlu_arabic_language_(grammar)": 0, "arabicmmlu_driving_test": 0, "arabicmmlu_general_knowledge": 0, "arabicmmlu_high_arabic_language": 0, "arabicmmlu_high_biology": 0, "arabicmmlu_high_civics": 0, "arabicmmlu_high_computer_science": 0, "arabicmmlu_high_economics": 0, "arabicmmlu_high_geography": 0, "arabicmmlu_high_history": 0, "arabicmmlu_high_islamic_studies": 0, "arabicmmlu_high_philosophy": 0, "arabicmmlu_high_physics": 0, "arabicmmlu_islamic_studies": 0, "arabicmmlu_middle_arabic_language": 0, "arabicmmlu_middle_civics": 0, "arabicmmlu_middle_computer_science": 0, "arabicmmlu_middle_economics": 0, "arabicmmlu_middle_general_knowledge": 0, "arabicmmlu_middle_geography": 0, "arabicmmlu_middle_history": 0, "arabicmmlu_middle_islamic_studies": 0, "arabicmmlu_middle_natural_science": 0, "arabicmmlu_middle_social_science": 0, "arabicmmlu_primary_arabic_language": 0, "arabicmmlu_primary_computer_science": 0, "arabicmmlu_primary_general_knowledge": 0, "arabicmmlu_primary_geography": 0, "arabicmmlu_primary_history": 0, "arabicmmlu_primary_islamic_studies": 0, "arabicmmlu_primary_math": 0, "arabicmmlu_primary_natural_science": 0, "arabicmmlu_primary_social_science": 0, "arabicmmlu_prof_law": 0, "arabicmmlu_univ_accounting": 0, "arabicmmlu_univ_computer_science": 0, "arabicmmlu_univ_economics": 0, "arabicmmlu_univ_management": 0, "arabicmmlu_univ_political_science": 0 }, "higher_is_better": { "arabicmmlu": { "acc": true }, "arabicmmlu_arabic_language_(general)": { "acc": true }, "arabicmmlu_arabic_language_(grammar)": { "acc": true }, "arabicmmlu_driving_test": { "acc": true }, "arabicmmlu_general_knowledge": { "acc": true }, "arabicmmlu_high_arabic_language": { "acc": true }, "arabicmmlu_high_biology": { "acc": true }, "arabicmmlu_high_civics": { "acc": true }, "arabicmmlu_high_computer_science": { "acc": true }, "arabicmmlu_high_economics": { "acc": true }, "arabicmmlu_high_geography": { "acc": true }, "arabicmmlu_high_history": { "acc": true }, "arabicmmlu_high_islamic_studies": { "acc": true }, "arabicmmlu_high_philosophy": { "acc": true }, "arabicmmlu_high_physics": { "acc": true }, "arabicmmlu_humanities": { "acc": true }, "arabicmmlu_islamic_studies": { "acc": true }, "arabicmmlu_language": { "acc": true }, "arabicmmlu_middle_arabic_language": { "acc": true }, "arabicmmlu_middle_civics": { "acc": true }, "arabicmmlu_middle_computer_science": { "acc": true }, "arabicmmlu_middle_economics": { "acc": true }, "arabicmmlu_middle_general_knowledge": { "acc": true }, "arabicmmlu_middle_geography": { "acc": true }, "arabicmmlu_middle_history": { "acc": true }, "arabicmmlu_middle_islamic_studies": { "acc": true }, "arabicmmlu_middle_natural_science": { "acc": true }, "arabicmmlu_middle_social_science": { "acc": true }, "arabicmmlu_other": { "acc": true }, "arabicmmlu_primary_arabic_language": { "acc": true }, "arabicmmlu_primary_computer_science": { "acc": true }, "arabicmmlu_primary_general_knowledge": { "acc": true }, "arabicmmlu_primary_geography": { "acc": true }, "arabicmmlu_primary_history": { "acc": true }, "arabicmmlu_primary_islamic_studies": { "acc": true }, "arabicmmlu_primary_math": { "acc": true }, "arabicmmlu_primary_natural_science": { "acc": true }, "arabicmmlu_primary_social_science": { "acc": true }, "arabicmmlu_prof_law": { "acc": true }, "arabicmmlu_social_science": { "acc": true }, "arabicmmlu_stem": { "acc": true }, "arabicmmlu_univ_accounting": { "acc": true }, "arabicmmlu_univ_computer_science": { "acc": true }, "arabicmmlu_univ_economics": { "acc": true }, "arabicmmlu_univ_management": { "acc": true }, "arabicmmlu_univ_political_science": { "acc": true } }, "n-samples": { "arabicmmlu_univ_management": { "original": 75, "effective": 75 }, "arabicmmlu_primary_general_knowledge": { "original": 162, "effective": 162 }, "arabicmmlu_general_knowledge": { "original": 864, "effective": 864 }, "arabicmmlu_driving_test": { "original": 1211, "effective": 1211 }, "arabicmmlu_middle_general_knowledge": { "original": 172, "effective": 172 }, "arabicmmlu_middle_geography": { "original": 272, "effective": 272 }, "arabicmmlu_univ_economics": { "original": 137, "effective": 137 }, "arabicmmlu_middle_social_science": { "original": 241, "effective": 241 }, "arabicmmlu_univ_political_science": { "original": 210, "effective": 210 }, "arabicmmlu_univ_accounting": { "original": 74, "effective": 74 }, "arabicmmlu_high_geography": { "original": 1038, "effective": 1038 }, "arabicmmlu_high_civics": { "original": 87, "effective": 87 }, "arabicmmlu_primary_geography": { "original": 57, "effective": 57 }, "arabicmmlu_middle_civics": { "original": 236, "effective": 236 }, "arabicmmlu_primary_social_science": { "original": 705, "effective": 705 }, "arabicmmlu_middle_economics": { "original": 87, "effective": 87 }, "arabicmmlu_high_economics": { "original": 360, "effective": 360 }, "arabicmmlu_middle_islamic_studies": { "original": 238, "effective": 238 }, "arabicmmlu_primary_islamic_studies": { "original": 999, "effective": 999 }, "arabicmmlu_islamic_studies": { "original": 639, "effective": 639 }, "arabicmmlu_middle_history": { "original": 203, "effective": 203 }, "arabicmmlu_high_philosophy": { "original": 39, "effective": 39 }, "arabicmmlu_high_history": { "original": 760, "effective": 760 }, "arabicmmlu_high_islamic_studies": { "original": 334, "effective": 334 }, "arabicmmlu_primary_history": { "original": 102, "effective": 102 }, "arabicmmlu_prof_law": { "original": 314, "effective": 314 }, "arabicmmlu_primary_computer_science": { "original": 190, "effective": 190 }, "arabicmmlu_univ_computer_science": { "original": 64, "effective": 64 }, "arabicmmlu_high_computer_science": { "original": 261, "effective": 261 }, "arabicmmlu_primary_natural_science": { "original": 336, "effective": 336 }, "arabicmmlu_primary_math": { "original": 409, "effective": 409 }, "arabicmmlu_high_biology": { "original": 1409, "effective": 1409 }, "arabicmmlu_high_physics": { "original": 255, "effective": 255 }, "arabicmmlu_middle_computer_science": { "original": 27, "effective": 27 }, "arabicmmlu_middle_natural_science": { "original": 242, "effective": 242 }, "arabicmmlu_primary_arabic_language": { "original": 252, "effective": 252 }, "arabicmmlu_middle_arabic_language": { "original": 27, "effective": 27 }, "arabicmmlu_high_arabic_language": { "original": 390, "effective": 390 }, "arabicmmlu_arabic_language_(general)": { "original": 612, "effective": 612 }, "arabicmmlu_arabic_language_(grammar)": { "original": 365, "effective": 365 } }, "config": { "model": "vllm", "model_args": "pretrained=inceptionai/jais-adapted-7b-chat,tensor_parallel_size=1,data_parallel_size=2,gpu_memory_utilization=0.4,download_dir=/tmp", "batch_size": 1, "batch_sizes": [], "device": null, "use_cache": null, "limit": null, "bootstrap_iters": 100000, "gen_kwargs": null, "random_seed": 0, "numpy_seed": 1234, "torch_seed": 1234, "fewshot_seed": 1234 }, "git_hash": "8e1bd48d", "date": 1735749990.730385, "pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.27.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1064-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.128\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 535.161.08\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.4\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.4\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 48\nOn-line CPU(s) list: 0-47\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7V13 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 1\nCore(s) per socket: 48\nSocket(s): 1\nStepping: 1\nBogoMIPS: 4890.87\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor: Microsoft\nVirtualization type: full\nL1d cache: 1.5 MiB (48 instances)\nL1i cache: 1.5 MiB (48 instances)\nL2 cache: 24 MiB (48 instances)\nL3 cache: 192 MiB (6 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-23\nNUMA node1 CPU(s): 24-47\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET, no microcode\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.0\n[pip3] pytorch-lightning==2.0.7\n[pip3] pytorch-quantization==2.1.2\n[pip3] torch==2.4.0\n[pip3] torch-tensorrt==2.0.0.dev0\n[pip3] torchaudio==2.1.0\n[pip3] torchdata==0.7.0a0\n[pip3] torchmetrics==1.2.0\n[pip3] torchvision==0.19.0\n[pip3] triton==3.0.0\n[conda] Could not collect", "transformers_version": "4.47.1", "upper_git_hash": "f64fe2f2a86055aaecced603b56097fd79201711", "tokenizer_pad_token": [ "", "0" ], "tokenizer_eos_token": [ "", "2" ], "tokenizer_bos_token": [ "", "1" ], "eot_token_id": 2, "max_length": 4096, "task_hashes": {}, "model_source": "vllm", "model_name": "inceptionai/jais-adapted-7b-chat", "model_name_sanitized": "inceptionai__jais-adapted-7b-chat", "system_instruction": null, "system_instruction_sha": null, "fewshot_as_multiturn": false, "chat_template": null, "chat_template_sha": null, "start_time": 4050.237020402, "end_time": 4482.328043771, "total_evaluation_time_seconds": "432.09102336900014" }