File size: 68,197 Bytes
1333c76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
07/22/2022 12:31:56 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True 07/22/2022 12:31:56 - INFO - __main__ - Training/evaluation parameters TrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_pin_memory=True, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, debug=[], deepspeed=None, disable_tqdm=False, do_eval=True, do_predict=True, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=IntervalStrategy.NO, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_min_num_params=0, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=False, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_model_id=None, hub_private_repo=False, hub_strategy=HubStrategy.EVERY_SAVE, hub_token=<HUB_TOKEN>, ignore_data_skip=False, include_inputs_for_metrics=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=5e-05, length_column_name=length, load_best_model_at_end=False, local_rank=-1, log_level=-1, log_level_replica=-1, log_on_each_node=True, logging_dir=runs/ebmnlp_hf/BioLinkBERT-base/runs/Jul22_12-31-56_spartan-gpgpu080.hpc.unimelb.edu.au, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=500, logging_strategy=IntervalStrategy.STEPS, lr_scheduler_type=SchedulerType.LINEAR, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, no_cuda=False, num_train_epochs=1.0, optim=OptimizerNames.ADAMW_HF, output_dir=runs/ebmnlp_hf/BioLinkBERT-base, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=32, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=<PUSH_TO_HUB_TOKEN>, ray_scope=last, remove_unused_columns=True, report_to=['tensorboard'], resume_from_checkpoint=None, run_name=runs/ebmnlp_hf/BioLinkBERT-base, save_on_each_node=False, save_steps=500, save_strategy=IntervalStrategy.NO, save_total_limit=None, seed=42, sharded_ddp=[], skip_memory_metrics=True, tf32=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_ipex=False, use_legacy_prediction_loop=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, xpu_backend=None, ) 07/22/2022 12:31:57 - WARNING - datasets.builder - Using custom data configuration default-2d9cec4b8a27d237 07/22/2022 12:31:57 - INFO - datasets.builder - Overwrite dataset info from restored data version. 07/22/2022 12:31:57 - INFO - datasets.info - Loading Dataset info from /home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5 07/22/2022 12:31:57 - WARNING - datasets.builder - Reusing dataset json (/home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5) 07/22/2022 12:31:57 - INFO - datasets.info - Loading Dataset info from /home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5 0%| | 0/3 [00:00<?, ?it/s] 100%|ββββββββββ| 3/3 [00:00<00:00, 491.92it/s] [INFO|configuration_utils.py:659] 2022-07-22 12:31:59,048 >> loading configuration file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/config.json from cache at /home/hungthinht/.cache/huggingface/transformers/ad032c76cac1f75bba037ba006dcccc1c62ab157749b194df023bfa55e5f4fbf.22ae3f7c73ebda8488a8505a67c1b929a707ae7db67a129f60b7c28acfc38436 [INFO|configuration_utils.py:708] 2022-07-22 12:31:59,083 >> Model config BertConfig { "_name_or_path": "michiyasunaga/BioLinkBERT-base", "architectures": [ "BertModel" ], "attention_probs_dropout_prob": 0.1, "classifier_dropout": null, "finetuning_task": "ner", "gradient_checkpointing": false, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "hidden_size": 768, "id2label": { "0": "B-INT", "1": "B-OUT", "2": "B-PAR", "3": "O" }, "initializer_range": 0.02, "intermediate_size": 3072, "label2id": { "B-INT": 0, "B-OUT": 1, "B-PAR": 2, "O": 3 }, "layer_norm_eps": 1e-12, "max_position_embeddings": 512, "model_type": "bert", "num_attention_heads": 12, "num_hidden_layers": 12, "pad_token_id": 0, "position_embedding_type": "absolute", "transformers_version": "4.20.1", "type_vocab_size": 2, "use_cache": true, "vocab_size": 28895 } [INFO|tokenization_utils_base.py:1781] 2022-07-22 12:32:05,294 >> loading file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/vocab.txt from cache at /home/hungthinht/.cache/huggingface/transformers/9eb712b5fcba51331b49cb69f18de1577371a2582055a298e2546c0c97d3b924.73b5c069d3e40205dd2df2379051c9f47d13c3bad0bcb3cee659c69e3a185a86 [INFO|tokenization_utils_base.py:1781] 2022-07-22 12:32:05,294 >> loading file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/tokenizer.json from cache at /home/hungthinht/.cache/huggingface/transformers/3c720cf86b025f815b1d833b6b39db05e8e7493b6f6a87788c485a946848b4d8.a25e24b89fd9bfd32e3c8d2dbb39879c62152e7f069ab24c97198c004cad94c9 [INFO|tokenization_utils_base.py:1781] 2022-07-22 12:32:05,294 >> loading file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/added_tokens.json from cache at None [INFO|tokenization_utils_base.py:1781] 2022-07-22 12:32:05,294 >> loading file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/special_tokens_map.json from cache at /home/hungthinht/.cache/huggingface/transformers/0598867425495ec6baf3617ab3789f3d8b84ebf869f7b43aa4a2930195a74dbe.dd8bd9bfd3664b530ea4e645105f557769387b3da9f79bdb55ed556bdd80611d [INFO|tokenization_utils_base.py:1781] 2022-07-22 12:32:05,294 >> loading file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/tokenizer_config.json from cache at /home/hungthinht/.cache/huggingface/transformers/30e2841862fd496cf36bc8647c9633a1dc319fbf6cc88a80438ca3f89e28339b.fab032bd2aab224bad4dcfc35e3bd6122976da1fa23e4feeb97d8fa65491aded [INFO|modeling_utils.py:2107] 2022-07-22 12:32:06,276 >> loading weights file https://huggingface.co/michiyasunaga/BioLinkBERT-base/resolve/main/pytorch_model.bin from cache at /home/hungthinht/.cache/huggingface/transformers/76a88449a3eb7019bbc0d164cc39a6a231c8bbe3b9678b8d40977424f0ad934d.f8b95ad9e1dea734685fba5a5b6142b539678b7fc2311981cc14ae61b19f709d [INFO|modeling_utils.py:2483] 2022-07-22 12:32:07,350 >> All model checkpoint weights were used when initializing BertForTokenClassification. [WARNING|modeling_utils.py:2485] 2022-07-22 12:32:07,350 >> Some weights of BertForTokenClassification were not initialized from the model checkpoint at michiyasunaga/BioLinkBERT-base and are newly initialized: ['classifier.weight', 'classifier.bias'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. 07/22/2022 12:32:07 - WARNING - datasets.fingerprint - Parameter 'function'=<function main.<locals>.tokenize_and_align_labels at 0x2ac6e9964940> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed. 07/22/2022 12:32:07 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5/cache-1c80317fa3b1799d.arrow 07/22/2022 12:32:07 - INFO - datasets.fingerprint - Parameter 'function'=<function main.<locals>.tokenize_and_align_labels at 0x2ac6e99b3d30> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. 07/22/2022 12:32:07 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5/cache-bdd640fb06671ad1.arrow 07/22/2022 12:32:07 - INFO - datasets.fingerprint - Parameter 'function'=<function main.<locals>.tokenize_and_align_labels at 0x2ac6e9964940> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. 07/22/2022 12:32:07 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/hungthinht/.cache/huggingface/datasets/json/default-2d9cec4b8a27d237/0.0.0/da492aad5680612e4028e7f6ddc04b1dfcec4b64db470ed7cc5f2bb265b9b6b5/cache-3eb13b9046685257.arrow [INFO|trainer.py:533] 2022-07-22 12:32:09,812 >> Using cuda_amp half precision backend [INFO|trainer.py:661] 2022-07-22 12:32:09,812 >> The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, word_ids, tokens. If id, ner_tags, word_ids, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message. /home/hungthinht/miniconda3/lib/python3.9/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( [INFO|trainer.py:1516] 2022-07-22 12:32:09,838 >> ***** Running training ***** [INFO|trainer.py:1517] 2022-07-22 12:32:09,838 >> Num examples = 40935 [INFO|trainer.py:1518] 2022-07-22 12:32:09,838 >> Num Epochs = 1 [INFO|trainer.py:1519] 2022-07-22 12:32:09,838 >> Instantaneous batch size per device = 32 [INFO|trainer.py:1520] 2022-07-22 12:32:09,838 >> Total train batch size (w. parallel, distributed & accumulation) = 32 [INFO|trainer.py:1521] 2022-07-22 12:32:09,838 >> Gradient Accumulation steps = 1 [INFO|trainer.py:1522] 2022-07-22 12:32:09,838 >> Total optimization steps = 1280 0%| | 0/1280 [00:00<?, ?it/s] 0%| | 1/1280 [00:00<13:42, 1.56it/s] 0%| | 3/1280 [00:00<04:50, 4.39it/s] 0%| | 5/1280 [00:00<03:11, 6.65it/s] 1%| | 7/1280 [00:01<02:31, 8.43it/s] 1%| | 9/1280 [00:01<02:06, 10.01it/s] 1%| | 11/1280 [00:01<01:59, 10.62it/s] 1%| | 13/1280 [00:01<01:49, 11.60it/s] 1%| | 15/1280 [00:01<01:42, 12.29it/s] 1%|β | 17/1280 [00:01<01:37, 12.91it/s] 1%|β | 19/1280 [00:01<01:33, 13.42it/s] 2%|β | 21/1280 [00:02<01:34, 13.33it/s] 2%|β | 23/1280 [00:02<01:34, 13.28it/s] 2%|β | 25/1280 [00:02<01:35, 13.19it/s] 2%|β | 27/1280 [00:02<01:32, 13.51it/s] 2%|β | 29/1280 [00:02<01:33, 13.35it/s] 2%|β | 31/1280 [00:02<01:37, 12.82it/s] 3%|β | 33/1280 [00:03<01:36, 12.92it/s] 3%|β | 35/1280 [00:03<01:34, 13.13it/s] 3%|β | 37/1280 [00:03<01:40, 12.40it/s] 3%|β | 39/1280 [00:03<01:35, 13.03it/s] 3%|β | 41/1280 [00:03<01:35, 12.98it/s] 3%|β | 43/1280 [00:03<01:33, 13.28it/s] 4%|β | 45/1280 [00:03<01:33, 13.23it/s] 4%|β | 47/1280 [00:04<01:29, 13.78it/s] 4%|β | 49/1280 [00:04<01:26, 14.19it/s] 4%|β | 51/1280 [00:04<01:31, 13.42it/s] 4%|β | 53/1280 [00:04<01:30, 13.51it/s] 4%|β | 55/1280 [00:04<01:34, 12.92it/s] 4%|β | 57/1280 [00:04<01:35, 12.77it/s] 5%|β | 59/1280 [00:05<01:34, 12.95it/s] 5%|β | 61/1280 [00:05<01:31, 13.35it/s] 5%|β | 63/1280 [00:05<01:30, 13.39it/s] 5%|β | 65/1280 [00:05<01:28, 13.77it/s] 5%|β | 67/1280 [00:05<01:28, 13.66it/s] 5%|β | 69/1280 [00:05<01:28, 13.61it/s] 6%|β | 71/1280 [00:05<01:26, 14.00it/s] 6%|β | 73/1280 [00:06<01:34, 12.73it/s] 6%|β | 75/1280 [00:06<01:32, 12.96it/s] 6%|β | 77/1280 [00:06<01:28, 13.52it/s] 6%|β | 79/1280 [00:06<01:27, 13.80it/s] 6%|β | 81/1280 [00:06<01:26, 13.85it/s] 6%|β | 83/1280 [00:06<01:25, 13.96it/s] 7%|β | 85/1280 [00:06<01:23, 14.27it/s] 7%|β | 87/1280 [00:07<01:23, 14.30it/s] 7%|β | 89/1280 [00:07<01:24, 14.14it/s] 7%|β | 91/1280 [00:07<01:23, 14.22it/s] 7%|β | 93/1280 [00:07<01:22, 14.45it/s] 7%|β | 95/1280 [00:07<01:24, 14.05it/s] 8%|β | 97/1280 [00:07<01:26, 13.74it/s] 8%|β | 99/1280 [00:07<01:28, 13.27it/s] 8%|β | 101/1280 [00:08<01:29, 13.11it/s] 8%|β | 103/1280 [00:08<01:29, 13.17it/s] 8%|β | 105/1280 [00:08<01:28, 13.34it/s] 8%|β | 107/1280 [00:08<01:24, 13.82it/s] 9%|β | 109/1280 [00:08<01:28, 13.30it/s] 9%|β | 111/1280 [00:08<01:25, 13.65it/s] 9%|β | 113/1280 [00:08<01:23, 14.05it/s] 9%|β | 115/1280 [00:09<01:32, 12.63it/s] 9%|β | 117/1280 [00:09<01:27, 13.26it/s] 9%|β | 119/1280 [00:09<01:24, 13.80it/s] 9%|β | 121/1280 [00:09<01:23, 13.93it/s] 10%|β | 123/1280 [00:09<01:25, 13.57it/s] 10%|β | 125/1280 [00:09<01:25, 13.44it/s] 10%|β | 127/1280 [00:09<01:24, 13.63it/s] 10%|β | 129/1280 [00:10<01:23, 13.71it/s] 10%|β | 131/1280 [00:10<01:21, 14.15it/s] 10%|β | 133/1280 [00:10<01:22, 13.91it/s] 11%|β | 135/1280 [00:10<01:22, 13.90it/s] 11%|β | 137/1280 [00:10<01:23, 13.75it/s] 11%|β | 139/1280 [00:10<01:21, 13.96it/s] 11%|β | 141/1280 [00:10<01:19, 14.30it/s] 11%|β | 143/1280 [00:11<01:18, 14.40it/s] 11%|ββ | 145/1280 [00:11<01:20, 14.08it/s] 11%|ββ | 147/1280 [00:11<01:20, 14.06it/s] 12%|ββ | 149/1280 [00:11<01:18, 14.34it/s] 12%|ββ | 151/1280 [00:11<01:18, 14.34it/s] 12%|ββ | 153/1280 [00:11<01:22, 13.70it/s] 12%|ββ | 155/1280 [00:11<01:22, 13.71it/s] 12%|ββ | 157/1280 [00:12<01:20, 14.03it/s] 12%|ββ | 159/1280 [00:12<01:20, 13.98it/s] 13%|ββ | 161/1280 [00:12<01:23, 13.40it/s] 13%|ββ | 163/1280 [00:12<01:24, 13.14it/s] 13%|ββ | 165/1280 [00:12<01:29, 12.51it/s] 13%|ββ | 167/1280 [00:12<01:24, 13.16it/s] 13%|ββ | 169/1280 [00:13<01:24, 13.13it/s] 13%|ββ | 171/1280 [00:13<01:20, 13.70it/s] 14%|ββ | 173/1280 [00:13<01:17, 14.25it/s] 14%|ββ | 175/1280 [00:13<01:17, 14.27it/s] 14%|ββ | 177/1280 [00:13<01:23, 13.16it/s] 14%|ββ | 179/1280 [00:13<01:20, 13.74it/s] 14%|ββ | 181/1280 [00:13<01:22, 13.29it/s] 14%|ββ | 183/1280 [00:14<01:19, 13.74it/s] 14%|ββ | 185/1280 [00:14<01:17, 14.13it/s] 15%|ββ | 187/1280 [00:14<01:14, 14.60it/s] 15%|ββ | 189/1280 [00:14<01:20, 13.53it/s] 15%|ββ | 191/1280 [00:14<01:20, 13.60it/s] 15%|ββ | 193/1280 [00:14<01:18, 13.93it/s] 15%|ββ | 195/1280 [00:14<01:17, 14.06it/s] 15%|ββ | 197/1280 [00:15<01:16, 14.21it/s] 16%|ββ | 199/1280 [00:15<01:20, 13.44it/s] 16%|ββ | 201/1280 [00:15<01:18, 13.80it/s] 16%|ββ | 203/1280 [00:15<01:16, 14.17it/s] 16%|ββ | 205/1280 [00:15<01:16, 14.09it/s] 16%|ββ | 207/1280 [00:15<01:15, 14.28it/s] 16%|ββ | 209/1280 [00:15<01:17, 13.82it/s] 16%|ββ | 211/1280 [00:16<01:18, 13.62it/s] 17%|ββ | 213/1280 [00:16<01:26, 12.31it/s] 17%|ββ | 215/1280 [00:16<01:26, 12.25it/s] 17%|ββ | 217/1280 [00:16<01:23, 12.66it/s] 17%|ββ | 219/1280 [00:16<01:21, 13.10it/s] 17%|ββ | 221/1280 [00:16<01:18, 13.57it/s] 17%|ββ | 223/1280 [00:16<01:15, 13.92it/s] 18%|ββ | 225/1280 [00:17<01:16, 13.76it/s] 18%|ββ | 227/1280 [00:17<01:17, 13.56it/s] 18%|ββ | 229/1280 [00:17<01:16, 13.79it/s] 18%|ββ | 231/1280 [00:17<01:14, 14.05it/s] 18%|ββ | 233/1280 [00:17<01:12, 14.36it/s] 18%|ββ | 235/1280 [00:17<01:11, 14.62it/s] 19%|ββ | 237/1280 [00:17<01:10, 14.76it/s] 19%|ββ | 239/1280 [00:18<01:11, 14.54it/s] 19%|ββ | 241/1280 [00:18<01:17, 13.43it/s] 19%|ββ | 243/1280 [00:18<01:14, 13.94it/s] 19%|ββ | 245/1280 [00:18<01:12, 14.21it/s] 19%|ββ | 247/1280 [00:18<01:11, 14.43it/s] 19%|ββ | 249/1280 [00:18<01:17, 13.35it/s] 20%|ββ | 251/1280 [00:18<01:15, 13.55it/s] 20%|ββ | 253/1280 [00:19<01:13, 13.88it/s] 20%|ββ | 255/1280 [00:19<01:15, 13.57it/s] 20%|ββ | 257/1280 [00:19<01:12, 14.04it/s] 20%|ββ | 259/1280 [00:19<01:13, 13.85it/s] 20%|ββ | 261/1280 [00:19<01:19, 12.82it/s] 21%|ββ | 263/1280 [00:19<01:20, 12.68it/s] 21%|ββ | 265/1280 [00:20<01:23, 12.09it/s] 21%|ββ | 267/1280 [00:20<01:19, 12.68it/s] 21%|ββ | 269/1280 [00:20<01:17, 13.06it/s] 21%|ββ | 271/1280 [00:20<01:16, 13.27it/s] 21%|βββ | 273/1280 [00:20<01:14, 13.56it/s] 21%|βββ | 275/1280 [00:20<01:16, 13.16it/s] 22%|βββ | 277/1280 [00:20<01:16, 13.14it/s] 22%|βββ | 279/1280 [00:21<01:16, 13.12it/s] 22%|βββ | 281/1280 [00:21<01:22, 12.05it/s] 22%|βββ | 283/1280 [00:21<01:20, 12.31it/s] 22%|βββ | 285/1280 [00:21<01:19, 12.51it/s] 22%|βββ | 287/1280 [00:21<01:16, 13.06it/s] 23%|βββ | 289/1280 [00:21<01:14, 13.34it/s] 23%|βββ | 291/1280 [00:22<01:12, 13.63it/s] 23%|βββ | 293/1280 [00:22<01:11, 13.76it/s] 23%|βββ | 295/1280 [00:22<01:11, 13.85it/s] 23%|βββ | 297/1280 [00:22<01:18, 12.51it/s] 23%|βββ | 299/1280 [00:22<01:26, 11.31it/s] 24%|βββ | 301/1280 [00:22<01:27, 11.14it/s] 24%|βββ | 303/1280 [00:23<01:26, 11.35it/s] 24%|βββ | 305/1280 [00:23<01:19, 12.34it/s] 24%|βββ | 307/1280 [00:23<01:19, 12.30it/s] 24%|βββ | 309/1280 [00:23<01:15, 12.94it/s] 24%|βββ | 311/1280 [00:23<01:10, 13.69it/s] 24%|βββ | 313/1280 [00:23<01:12, 13.35it/s] 25%|βββ | 315/1280 [00:23<01:12, 13.32it/s] 25%|βββ | 317/1280 [00:24<01:14, 13.01it/s] 25%|βββ | 319/1280 [00:24<01:10, 13.55it/s] 25%|βββ | 321/1280 [00:24<01:08, 14.03it/s] 25%|βββ | 323/1280 [00:24<01:06, 14.39it/s] 25%|βββ | 325/1280 [00:24<01:07, 14.20it/s] 26%|βββ | 327/1280 [00:24<01:06, 14.44it/s] 26%|βββ | 329/1280 [00:24<01:09, 13.76it/s] 26%|βββ | 331/1280 [00:25<01:11, 13.22it/s] 26%|βββ | 333/1280 [00:25<01:13, 12.93it/s] 26%|βββ | 335/1280 [00:25<01:11, 13.30it/s] 26%|βββ | 337/1280 [00:25<01:09, 13.62it/s] 26%|βββ | 339/1280 [00:25<01:07, 13.98it/s] 27%|βββ | 341/1280 [00:25<01:05, 14.29it/s] 27%|βββ | 343/1280 [00:25<01:05, 14.20it/s] 27%|βββ | 345/1280 [00:26<01:05, 14.26it/s] 27%|βββ | 347/1280 [00:26<01:04, 14.55it/s] 27%|βββ | 349/1280 [00:26<01:02, 14.80it/s] 27%|βββ | 351/1280 [00:26<01:03, 14.73it/s] 28%|βββ | 353/1280 [00:26<01:09, 13.35it/s] 28%|βββ | 355/1280 [00:26<01:08, 13.55it/s] 28%|βββ | 357/1280 [00:27<01:09, 13.37it/s] 28%|βββ | 359/1280 [00:27<01:07, 13.65it/s] 28%|βββ | 361/1280 [00:27<01:05, 14.12it/s] 28%|βββ | 363/1280 [00:27<01:08, 13.32it/s] 29%|βββ | 365/1280 [00:27<01:16, 12.02it/s] 29%|βββ | 367/1280 [00:27<01:11, 12.68it/s] 29%|βββ | 369/1280 [00:27<01:11, 12.78it/s] 29%|βββ | 371/1280 [00:28<01:17, 11.75it/s] 29%|βββ | 373/1280 [00:28<01:16, 11.91it/s] 29%|βββ | 375/1280 [00:28<01:13, 12.33it/s] 29%|βββ | 377/1280 [00:28<01:10, 12.79it/s] 30%|βββ | 379/1280 [00:28<01:06, 13.54it/s] 30%|βββ | 381/1280 [00:28<01:04, 13.93it/s] 30%|βββ | 383/1280 [00:29<01:07, 13.26it/s] 30%|βββ | 385/1280 [00:29<01:05, 13.67it/s] 30%|βββ | 387/1280 [00:29<01:04, 13.75it/s] 30%|βββ | 389/1280 [00:29<01:03, 14.12it/s] 31%|βββ | 391/1280 [00:29<01:07, 13.17it/s] 31%|βββ | 393/1280 [00:29<01:06, 13.34it/s] 31%|βββ | 395/1280 [00:29<01:04, 13.81it/s] 31%|βββ | 397/1280 [00:30<01:04, 13.63it/s] 31%|βββ | 399/1280 [00:30<01:06, 13.24it/s] 31%|ββββ | 401/1280 [00:30<01:08, 12.91it/s] 31%|ββββ | 403/1280 [00:30<01:04, 13.59it/s] 32%|ββββ | 405/1280 [00:30<01:08, 12.82it/s] 32%|ββββ | 407/1280 [00:30<01:06, 13.16it/s] 32%|ββββ | 409/1280 [00:30<01:04, 13.42it/s] 32%|ββββ | 411/1280 [00:31<01:04, 13.50it/s] 32%|ββββ | 413/1280 [00:31<01:02, 13.85it/s] 32%|ββββ | 415/1280 [00:31<01:06, 13.03it/s] 33%|ββββ | 417/1280 [00:31<01:03, 13.49it/s] 33%|ββββ | 419/1280 [00:31<01:04, 13.29it/s] 33%|ββββ | 421/1280 [00:31<01:02, 13.84it/s] 33%|ββββ | 423/1280 [00:31<01:02, 13.62it/s] 33%|ββββ | 425/1280 [00:32<01:04, 13.20it/s] 33%|ββββ | 427/1280 [00:32<01:07, 12.59it/s] 34%|ββββ | 429/1280 [00:32<01:06, 12.88it/s] 34%|ββββ | 431/1280 [00:32<01:03, 13.38it/s] 34%|ββββ | 433/1280 [00:32<01:01, 13.77it/s] 34%|ββββ | 435/1280 [00:32<00:59, 14.27it/s] 34%|ββββ | 437/1280 [00:33<00:59, 14.20it/s] 34%|ββββ | 439/1280 [00:33<00:58, 14.27it/s] 34%|ββββ | 441/1280 [00:33<01:01, 13.53it/s] 35%|ββββ | 443/1280 [00:33<01:05, 12.86it/s] 35%|ββββ | 445/1280 [00:33<01:05, 12.72it/s] 35%|ββββ | 447/1280 [00:33<01:02, 13.22it/s] 35%|ββββ | 449/1280 [00:34<01:15, 11.03it/s] 35%|ββββ | 451/1280 [00:34<01:14, 11.17it/s] 35%|ββββ | 453/1280 [00:34<01:09, 11.91it/s] 36%|ββββ | 455/1280 [00:34<01:04, 12.80it/s] 36%|ββββ | 457/1280 [00:34<01:01, 13.31it/s] 36%|ββββ | 459/1280 [00:34<00:58, 13.92it/s] 36%|ββββ | 461/1280 [00:34<01:00, 13.61it/s] 36%|ββββ | 463/1280 [00:35<00:58, 14.07it/s] 36%|ββββ | 465/1280 [00:35<00:59, 13.59it/s] 36%|ββββ | 467/1280 [00:35<00:58, 13.91it/s] 37%|ββββ | 469/1280 [00:35<00:57, 14.06it/s] 37%|ββββ | 471/1280 [00:35<01:09, 11.62it/s] 37%|ββββ | 473/1280 [00:35<01:05, 12.30it/s] 37%|ββββ | 475/1280 [00:35<01:02, 12.96it/s] 37%|ββββ | 477/1280 [00:36<01:03, 12.58it/s] 37%|ββββ | 479/1280 [00:36<01:04, 12.32it/s] 38%|ββββ | 481/1280 [00:36<01:01, 12.94it/s] 38%|ββββ | 483/1280 [00:36<01:01, 12.91it/s] 38%|ββββ | 485/1280 [00:36<00:59, 13.40it/s] 38%|ββββ | 487/1280 [00:36<00:57, 13.83it/s] 38%|ββββ | 489/1280 [00:37<00:55, 14.33it/s] 38%|ββββ | 491/1280 [00:37<00:56, 13.88it/s] 39%|ββββ | 493/1280 [00:37<00:57, 13.67it/s] 39%|ββββ | 495/1280 [00:37<00:58, 13.33it/s] 39%|ββββ | 497/1280 [00:37<01:00, 13.00it/s] 39%|ββββ | 499/1280 [00:37<01:02, 12.58it/s] {'loss': 0.5034, 'learning_rate': 3.0546875e-05, 'epoch': 0.39} 39%|ββββ | 500/1280 [00:37<01:02, 12.58it/s] 39%|ββββ | 501/1280 [00:37<00:59, 13.01it/s] 39%|ββββ | 503/1280 [00:38<00:59, 13.00it/s] 39%|ββββ | 505/1280 [00:38<00:57, 13.56it/s] 40%|ββββ | 507/1280 [00:38<00:56, 13.65it/s] 40%|ββββ | 509/1280 [00:38<00:55, 14.00it/s] 40%|ββββ | 511/1280 [00:38<00:54, 14.15it/s] 40%|ββββ | 513/1280 [00:38<00:52, 14.51it/s] 40%|ββββ | 515/1280 [00:38<00:51, 14.82it/s] 40%|ββββ | 517/1280 [00:39<00:51, 14.91it/s] 41%|ββββ | 519/1280 [00:39<00:51, 14.73it/s] 41%|ββββ | 521/1280 [00:39<00:50, 14.90it/s] 41%|ββββ | 523/1280 [00:39<00:51, 14.74it/s] 41%|ββββ | 525/1280 [00:39<00:51, 14.75it/s] 41%|ββββ | 527/1280 [00:39<00:51, 14.61it/s] 41%|βββββ | 529/1280 [00:39<00:53, 14.01it/s] 41%|βββββ | 531/1280 [00:40<00:53, 13.98it/s] 42%|βββββ | 533/1280 [00:40<00:55, 13.37it/s] 42%|βββββ | 535/1280 [00:40<00:53, 13.96it/s] 42%|βββββ | 537/1280 [00:40<00:51, 14.34it/s] 42%|βββββ | 539/1280 [00:40<00:50, 14.62it/s] 42%|βββββ | 541/1280 [00:40<00:51, 14.45it/s] 42%|βββββ | 543/1280 [00:40<00:51, 14.39it/s] 43%|βββββ | 545/1280 [00:41<00:51, 14.38it/s] 43%|βββββ | 547/1280 [00:41<00:53, 13.70it/s] 43%|βββββ | 549/1280 [00:41<00:52, 13.81it/s] 43%|βββββ | 551/1280 [00:41<00:51, 14.17it/s] 43%|βββββ | 553/1280 [00:41<00:49, 14.55it/s] 43%|βββββ | 555/1280 [00:41<00:50, 14.48it/s] 44%|βββββ | 557/1280 [00:41<00:49, 14.50it/s] 44%|βββββ | 559/1280 [00:42<00:52, 13.67it/s] 44%|βββββ | 561/1280 [00:42<00:54, 13.20it/s] 44%|βββββ | 563/1280 [00:42<00:54, 13.13it/s] 44%|βββββ | 565/1280 [00:42<00:52, 13.62it/s] 44%|βββββ | 567/1280 [00:42<00:55, 12.95it/s] 44%|βββββ | 569/1280 [00:42<00:53, 13.33it/s] 45%|βββββ | 571/1280 [00:42<00:51, 13.89it/s] 45%|βββββ | 573/1280 [00:43<00:52, 13.36it/s] 45%|βββββ | 575/1280 [00:43<00:54, 12.91it/s] 45%|βββββ | 577/1280 [00:43<00:51, 13.55it/s] 45%|βββββ | 579/1280 [00:43<00:49, 14.04it/s] 45%|βββββ | 581/1280 [00:43<00:51, 13.70it/s] 46%|βββββ | 583/1280 [00:43<00:52, 13.26it/s] 46%|βββββ | 585/1280 [00:43<00:53, 13.11it/s] 46%|βββββ | 587/1280 [00:44<00:51, 13.55it/s] 46%|βββββ | 589/1280 [00:44<00:50, 13.74it/s] 46%|βββββ | 591/1280 [00:44<00:49, 13.96it/s] 46%|βββββ | 593/1280 [00:44<00:48, 14.28it/s] 46%|βββββ | 595/1280 [00:44<00:49, 13.90it/s] 47%|βββββ | 597/1280 [00:44<00:47, 14.34it/s] 47%|βββββ | 599/1280 [00:44<00:47, 14.34it/s] 47%|βββββ | 601/1280 [00:45<00:46, 14.55it/s] 47%|βββββ | 603/1280 [00:45<00:46, 14.55it/s] 47%|βββββ | 605/1280 [00:45<00:45, 14.70it/s] 47%|βββββ | 607/1280 [00:45<00:48, 13.97it/s] 48%|βββββ | 609/1280 [00:45<00:47, 14.07it/s] 48%|βββββ | 611/1280 [00:45<00:50, 13.35it/s] 48%|βββββ | 613/1280 [00:45<00:50, 13.28it/s] 48%|βββββ | 615/1280 [00:46<00:48, 13.76it/s] 48%|βββββ | 617/1280 [00:46<00:49, 13.31it/s] 48%|βββββ | 619/1280 [00:46<00:52, 12.66it/s] 49%|βββββ | 621/1280 [00:46<00:53, 12.22it/s] 49%|βββββ | 623/1280 [00:46<00:54, 12.09it/s] 49%|βββββ | 625/1280 [00:46<00:51, 12.77it/s] 49%|βββββ | 627/1280 [00:47<00:48, 13.36it/s] 49%|βββββ | 629/1280 [00:47<00:47, 13.73it/s] 49%|βββββ | 631/1280 [00:47<00:47, 13.62it/s] 49%|βββββ | 633/1280 [00:47<00:45, 14.23it/s] 50%|βββββ | 635/1280 [00:47<00:47, 13.64it/s] 50%|βββββ | 637/1280 [00:47<00:46, 13.84it/s] 50%|βββββ | 639/1280 [00:47<00:47, 13.37it/s] 50%|βββββ | 641/1280 [00:48<00:47, 13.57it/s] 50%|βββββ | 643/1280 [00:48<00:45, 13.94it/s] 50%|βββββ | 645/1280 [00:48<00:45, 13.93it/s] 51%|βββββ | 647/1280 [00:48<00:45, 14.05it/s] 51%|βββββ | 649/1280 [00:48<00:45, 13.75it/s] 51%|βββββ | 651/1280 [00:48<00:45, 13.78it/s] 51%|βββββ | 653/1280 [00:48<00:45, 13.75it/s] 51%|βββββ | 655/1280 [00:49<00:48, 12.96it/s] 51%|ββββββ | 657/1280 [00:49<00:46, 13.39it/s] 51%|ββββββ | 659/1280 [00:49<00:59, 10.40it/s] 52%|ββββββ | 661/1280 [00:49<00:54, 11.31it/s] 52%|ββββββ | 663/1280 [00:49<00:50, 12.15it/s] 52%|ββββββ | 665/1280 [00:49<00:48, 12.66it/s] 52%|ββββββ | 667/1280 [00:50<00:47, 12.87it/s] 52%|ββββββ | 669/1280 [00:50<00:45, 13.51it/s] 52%|ββββββ | 671/1280 [00:50<00:45, 13.30it/s] 53%|ββββββ | 673/1280 [00:50<00:44, 13.66it/s] 53%|ββββββ | 675/1280 [00:50<00:42, 14.17it/s] 53%|ββββββ | 677/1280 [00:50<00:41, 14.55it/s] 53%|ββββββ | 679/1280 [00:50<00:42, 13.98it/s] 53%|ββββββ | 681/1280 [00:51<00:44, 13.57it/s] 53%|ββββββ | 683/1280 [00:51<00:45, 13.16it/s] 54%|ββββββ | 685/1280 [00:51<00:43, 13.80it/s] 54%|ββββββ | 687/1280 [00:51<00:42, 14.09it/s] 54%|ββββββ | 689/1280 [00:51<00:41, 14.30it/s] 54%|ββββββ | 691/1280 [00:51<00:43, 13.66it/s] 54%|ββββββ | 693/1280 [00:51<00:41, 14.12it/s] 54%|ββββββ | 695/1280 [00:52<00:40, 14.39it/s] 54%|ββββββ | 697/1280 [00:52<00:41, 14.00it/s] 55%|ββββββ | 699/1280 [00:52<00:41, 14.01it/s] 55%|ββββββ | 701/1280 [00:52<00:42, 13.76it/s] 55%|ββββββ | 703/1280 [00:52<00:41, 13.84it/s] 55%|ββββββ | 705/1280 [00:52<00:44, 12.89it/s] 55%|ββββββ | 707/1280 [00:53<00:49, 11.66it/s] 55%|ββββββ | 709/1280 [00:53<00:49, 11.53it/s] 56%|ββββββ | 711/1280 [00:53<00:45, 12.41it/s] 56%|ββββββ | 713/1280 [00:53<00:43, 13.18it/s] 56%|ββββββ | 715/1280 [00:53<00:43, 13.07it/s] 56%|ββββββ | 717/1280 [00:53<00:41, 13.52it/s] 56%|ββββββ | 719/1280 [00:53<00:39, 14.09it/s] 56%|ββββββ | 721/1280 [00:54<00:39, 14.08it/s] 56%|ββββββ | 723/1280 [00:54<00:38, 14.30it/s] 57%|ββββββ | 725/1280 [00:54<00:40, 13.81it/s] 57%|ββββββ | 727/1280 [00:54<00:43, 12.79it/s] 57%|ββββββ | 729/1280 [00:54<00:40, 13.52it/s] 57%|ββββββ | 731/1280 [00:54<00:40, 13.48it/s] 57%|ββββββ | 733/1280 [00:54<00:39, 13.75it/s] 57%|ββββββ | 735/1280 [00:55<00:38, 13.98it/s] 58%|ββββββ | 737/1280 [00:55<00:38, 14.14it/s] 58%|ββββββ | 739/1280 [00:55<00:38, 14.14it/s] 58%|ββββββ | 741/1280 [00:55<00:37, 14.21it/s] 58%|ββββββ | 743/1280 [00:55<00:37, 14.26it/s] 58%|ββββββ | 745/1280 [00:55<00:37, 14.41it/s] 58%|ββββββ | 747/1280 [00:55<00:39, 13.50it/s] 59%|ββββββ | 749/1280 [00:56<00:38, 13.89it/s] 59%|ββββββ | 751/1280 [00:56<00:38, 13.58it/s] 59%|ββββββ | 753/1280 [00:56<00:37, 14.00it/s] 59%|ββββββ | 755/1280 [00:56<00:38, 13.68it/s] 59%|ββββββ | 757/1280 [00:56<00:39, 13.40it/s] 59%|ββββββ | 759/1280 [00:56<00:39, 13.28it/s] 59%|ββββββ | 761/1280 [00:56<00:37, 13.68it/s] 60%|ββββββ | 763/1280 [00:57<00:41, 12.40it/s] 60%|ββββββ | 765/1280 [00:57<00:39, 13.07it/s] 60%|ββββββ | 767/1280 [00:57<00:38, 13.46it/s] 60%|ββββββ | 769/1280 [00:57<00:37, 13.62it/s] 60%|ββββββ | 771/1280 [00:57<00:38, 13.30it/s] 60%|ββββββ | 773/1280 [00:57<00:41, 12.28it/s] 61%|ββββββ | 775/1280 [00:58<00:38, 13.00it/s] 61%|ββββββ | 777/1280 [00:58<00:41, 12.15it/s] 61%|ββββββ | 779/1280 [00:58<00:38, 12.88it/s] 61%|ββββββ | 781/1280 [00:58<00:39, 12.68it/s] 61%|ββββββ | 783/1280 [00:58<00:38, 12.98it/s] 61%|βββββββ | 785/1280 [00:58<00:36, 13.55it/s] 61%|βββββββ | 787/1280 [00:58<00:35, 13.89it/s] 62%|βββββββ | 789/1280 [00:59<00:37, 13.19it/s] 62%|βββββββ | 791/1280 [00:59<00:38, 12.55it/s] 62%|βββββββ | 793/1280 [00:59<00:37, 12.95it/s] 62%|βββββββ | 795/1280 [00:59<00:36, 13.22it/s] 62%|βββββββ | 797/1280 [00:59<00:35, 13.63it/s] 62%|βββββββ | 799/1280 [00:59<00:35, 13.50it/s] 63%|βββββββ | 801/1280 [01:00<00:34, 13.72it/s] 63%|βββββββ | 803/1280 [01:00<00:35, 13.44it/s] 63%|βββββββ | 805/1280 [01:00<00:34, 13.85it/s] 63%|βββββββ | 807/1280 [01:00<00:35, 13.50it/s] 63%|βββββββ | 809/1280 [01:00<00:34, 13.67it/s] 63%|βββββββ | 811/1280 [01:00<00:33, 14.07it/s] 64%|βββββββ | 813/1280 [01:00<00:33, 13.86it/s] 64%|βββββββ | 815/1280 [01:01<00:33, 13.70it/s] 64%|βββββββ | 817/1280 [01:01<00:32, 14.14it/s] 64%|βββββββ | 819/1280 [01:01<00:33, 13.64it/s] 64%|βββββββ | 821/1280 [01:01<00:32, 13.91it/s] 64%|βββββββ | 823/1280 [01:01<00:32, 14.22it/s] 64%|βββββββ | 825/1280 [01:01<00:31, 14.44it/s] 65%|βββββββ | 827/1280 [01:01<00:31, 14.49it/s] 65%|βββββββ | 829/1280 [01:02<00:31, 14.34it/s] 65%|βββββββ | 831/1280 [01:02<00:32, 13.83it/s] 65%|βββββββ | 833/1280 [01:02<00:32, 13.84it/s] 65%|βββββββ | 835/1280 [01:02<00:38, 11.60it/s] 65%|βββββββ | 837/1280 [01:02<00:40, 10.99it/s] 66%|βββββββ | 839/1280 [01:02<00:40, 10.84it/s] 66%|βββββββ | 841/1280 [01:03<00:39, 11.24it/s] 66%|βββββββ | 843/1280 [01:03<00:37, 11.60it/s] 66%|βββββββ | 845/1280 [01:03<00:36, 11.99it/s] 66%|βββββββ | 847/1280 [01:03<00:34, 12.54it/s] 66%|βββββββ | 849/1280 [01:03<00:33, 13.00it/s] 66%|βββββββ | 851/1280 [01:03<00:32, 13.07it/s] 67%|βββββββ | 853/1280 [01:04<00:34, 12.26it/s] 67%|βββββββ | 855/1280 [01:04<00:32, 13.04it/s] 67%|βββββββ | 857/1280 [01:04<00:31, 13.63it/s] 67%|βββββββ | 859/1280 [01:04<00:31, 13.38it/s] 67%|βββββββ | 861/1280 [01:04<00:30, 13.87it/s] 67%|βββββββ | 863/1280 [01:04<00:32, 12.77it/s] 68%|βββββββ | 865/1280 [01:04<00:30, 13.57it/s] 68%|βββββββ | 867/1280 [01:05<00:30, 13.38it/s] 68%|βββββββ | 869/1280 [01:05<00:30, 13.29it/s] 68%|βββββββ | 871/1280 [01:05<00:30, 13.24it/s] 68%|βββββββ | 873/1280 [01:05<00:31, 13.09it/s] 68%|βββββββ | 875/1280 [01:05<00:30, 13.34it/s] 69%|βββββββ | 877/1280 [01:05<00:29, 13.64it/s] 69%|βββββββ | 879/1280 [01:05<00:28, 13.98it/s] 69%|βββββββ | 881/1280 [01:06<00:28, 13.99it/s] 69%|βββββββ | 883/1280 [01:06<00:29, 13.47it/s] 69%|βββββββ | 885/1280 [01:06<00:28, 13.91it/s] 69%|βββββββ | 887/1280 [01:06<00:28, 13.58it/s] 69%|βββββββ | 889/1280 [01:06<00:29, 13.44it/s] 70%|βββββββ | 891/1280 [01:06<00:30, 12.95it/s] 70%|βββββββ | 893/1280 [01:07<00:31, 12.43it/s] 70%|βββββββ | 895/1280 [01:07<00:31, 12.41it/s] 70%|βββββββ | 897/1280 [01:07<00:30, 12.37it/s] 70%|βββββββ | 899/1280 [01:07<00:29, 12.87it/s] 70%|βββββββ | 901/1280 [01:07<00:29, 12.96it/s] 71%|βββββββ | 903/1280 [01:07<00:33, 11.24it/s] 71%|βββββββ | 905/1280 [01:08<00:32, 11.66it/s] 71%|βββββββ | 907/1280 [01:08<00:30, 12.14it/s] 71%|βββββββ | 909/1280 [01:08<00:30, 12.32it/s] 71%|βββββββ | 911/1280 [01:08<00:28, 12.89it/s] 71%|ββββββββ | 913/1280 [01:08<00:30, 12.01it/s] 71%|ββββββββ | 915/1280 [01:08<00:29, 12.55it/s] 72%|ββββββββ | 917/1280 [01:09<00:30, 11.73it/s] 72%|ββββββββ | 919/1280 [01:09<00:28, 12.60it/s] 72%|ββββββββ | 921/1280 [01:09<00:28, 12.52it/s] 72%|ββββββββ | 923/1280 [01:09<00:27, 12.94it/s] 72%|ββββββββ | 925/1280 [01:09<00:27, 12.99it/s] 72%|ββββββββ | 927/1280 [01:09<00:26, 13.19it/s] 73%|ββββββββ | 929/1280 [01:09<00:26, 13.39it/s] 73%|ββββββββ | 931/1280 [01:10<00:26, 13.14it/s] 73%|ββββββββ | 933/1280 [01:10<00:25, 13.45it/s] 73%|ββββββββ | 935/1280 [01:10<00:24, 13.97it/s] 73%|ββββββββ | 937/1280 [01:10<00:24, 13.80it/s] 73%|ββββββββ | 939/1280 [01:10<00:25, 13.60it/s] 74%|ββββββββ | 941/1280 [01:10<00:25, 13.11it/s] 74%|ββββββββ | 943/1280 [01:10<00:25, 13.29it/s] 74%|ββββββββ | 945/1280 [01:11<00:24, 13.57it/s] 74%|ββββββββ | 947/1280 [01:11<00:23, 14.10it/s] 74%|ββββββββ | 949/1280 [01:11<00:23, 13.90it/s] 74%|ββββββββ | 951/1280 [01:11<00:22, 14.36it/s] 74%|ββββββββ | 953/1280 [01:11<00:23, 14.07it/s] 75%|ββββββββ | 955/1280 [01:11<00:23, 14.08it/s] 75%|ββββββββ | 957/1280 [01:11<00:22, 14.17it/s] 75%|ββββββββ | 959/1280 [01:12<00:23, 13.57it/s] 75%|ββββββββ | 961/1280 [01:12<00:23, 13.72it/s] 75%|ββββββββ | 963/1280 [01:12<00:22, 13.81it/s] 75%|ββββββββ | 965/1280 [01:12<00:22, 14.17it/s] 76%|ββββββββ | 967/1280 [01:12<00:22, 13.93it/s] 76%|ββββββββ | 969/1280 [01:12<00:23, 13.51it/s] 76%|ββββββββ | 971/1280 [01:12<00:22, 13.93it/s] 76%|ββββββββ | 973/1280 [01:13<00:24, 12.42it/s] 76%|ββββββββ | 975/1280 [01:13<00:23, 13.06it/s] 76%|ββββββββ | 977/1280 [01:13<00:23, 13.06it/s] 76%|ββββββββ | 979/1280 [01:13<00:23, 12.62it/s] 77%|ββββββββ | 981/1280 [01:13<00:22, 13.14it/s] 77%|ββββββββ | 983/1280 [01:13<00:22, 13.48it/s] 77%|ββββββββ | 985/1280 [01:14<00:21, 13.93it/s] 77%|ββββββββ | 987/1280 [01:14<00:21, 13.69it/s] 77%|ββββββββ | 989/1280 [01:14<00:20, 14.13it/s] 77%|ββββββββ | 991/1280 [01:14<00:20, 13.91it/s] 78%|ββββββββ | 993/1280 [01:14<00:20, 13.70it/s] 78%|ββββββββ | 995/1280 [01:14<00:20, 13.99it/s] 78%|ββββββββ | 997/1280 [01:14<00:20, 14.07it/s] 78%|ββββββββ | 999/1280 [01:15<00:19, 14.42it/s] {'loss': 0.4383, 'learning_rate': 1.1015625e-05, 'epoch': 0.78} 78%|ββββββββ | 1000/1280 [01:15<00:19, 14.42it/s] 78%|ββββββββ | 1001/1280 [01:15<00:19, 14.55it/s] 78%|ββββββββ | 1003/1280 [01:15<00:19, 14.46it/s] 79%|ββββββββ | 1005/1280 [01:15<00:18, 14.60it/s] 79%|ββββββββ | 1007/1280 [01:15<00:19, 14.23it/s] 79%|ββββββββ | 1009/1280 [01:15<00:19, 13.56it/s] 79%|ββββββββ | 1011/1280 [01:15<00:22, 11.91it/s] 79%|ββββββββ | 1013/1280 [01:16<00:21, 12.57it/s] 79%|ββββββββ | 1015/1280 [01:16<00:19, 13.30it/s] 79%|ββββββββ | 1017/1280 [01:16<00:20, 13.14it/s] 80%|ββββββββ | 1019/1280 [01:16<00:20, 13.03it/s] 80%|ββββββββ | 1021/1280 [01:16<00:21, 11.95it/s] 80%|ββββββββ | 1023/1280 [01:16<00:20, 12.74it/s] 80%|ββββββββ | 1025/1280 [01:16<00:18, 13.53it/s] 80%|ββββββββ | 1027/1280 [01:17<00:17, 14.14it/s] 80%|ββββββββ | 1029/1280 [01:17<00:19, 12.59it/s] 81%|ββββββββ | 1031/1280 [01:17<00:18, 13.11it/s] 81%|ββββββββ | 1033/1280 [01:17<00:18, 13.03it/s] 81%|ββββββββ | 1035/1280 [01:17<00:18, 13.24it/s] 81%|ββββββββ | 1037/1280 [01:17<00:17, 13.70it/s] 81%|ββββββββ | 1039/1280 [01:18<00:17, 14.14it/s] 81%|βββββββββ | 1041/1280 [01:18<00:17, 13.52it/s] 81%|βββββββββ | 1043/1280 [01:18<00:17, 13.48it/s] 82%|βββββββββ | 1045/1280 [01:18<00:17, 13.28it/s] 82%|βββββββββ | 1047/1280 [01:18<00:18, 12.72it/s] 82%|βββββββββ | 1049/1280 [01:18<00:19, 12.13it/s] 82%|βββββββββ | 1051/1280 [01:18<00:18, 12.49it/s] 82%|βββββββββ | 1053/1280 [01:19<00:17, 13.07it/s] 82%|βββββββββ | 1055/1280 [01:19<00:17, 12.86it/s] 83%|βββββββββ | 1057/1280 [01:19<00:16, 13.29it/s] 83%|βββββββββ | 1059/1280 [01:19<00:16, 13.08it/s] 83%|βββββββββ | 1061/1280 [01:19<00:17, 12.77it/s] 83%|βββββββββ | 1063/1280 [01:19<00:16, 13.14it/s] 83%|βββββββββ | 1065/1280 [01:20<00:15, 13.57it/s] 83%|βββββββββ | 1067/1280 [01:20<00:16, 13.20it/s] 84%|βββββββββ | 1069/1280 [01:20<00:15, 13.51it/s] 84%|βββββββββ | 1071/1280 [01:20<00:15, 13.27it/s] 84%|βββββββββ | 1073/1280 [01:20<00:15, 13.63it/s] 84%|βββββββββ | 1075/1280 [01:20<00:15, 13.33it/s] 84%|βββββββββ | 1077/1280 [01:20<00:14, 13.82it/s] 84%|βββββββββ | 1079/1280 [01:21<00:14, 13.95it/s] 84%|βββββββββ | 1081/1280 [01:21<00:14, 13.72it/s] 85%|βββββββββ | 1083/1280 [01:21<00:14, 13.93it/s] 85%|βββββββββ | 1085/1280 [01:21<00:14, 13.34it/s] 85%|βββββββββ | 1087/1280 [01:21<00:13, 13.83it/s] 85%|βββββββββ | 1089/1280 [01:21<00:13, 14.19it/s] 85%|βββββββββ | 1091/1280 [01:21<00:13, 14.26it/s] 85%|βββββββββ | 1093/1280 [01:22<00:13, 13.90it/s] 86%|βββββββββ | 1095/1280 [01:22<00:13, 14.11it/s] 86%|βββββββββ | 1097/1280 [01:22<00:14, 12.87it/s] 86%|βββββββββ | 1099/1280 [01:22<00:13, 12.96it/s] 86%|βββββββββ | 1101/1280 [01:22<00:13, 12.95it/s] 86%|βββββββββ | 1103/1280 [01:22<00:13, 13.17it/s] 86%|βββββββββ | 1105/1280 [01:22<00:13, 13.15it/s] 86%|βββββββββ | 1107/1280 [01:23<00:12, 13.42it/s] 87%|βββββββββ | 1109/1280 [01:23<00:13, 12.25it/s] 87%|βββββββββ | 1111/1280 [01:23<00:13, 12.68it/s] 87%|βββββββββ | 1113/1280 [01:23<00:12, 12.98it/s] 87%|βββββββββ | 1115/1280 [01:23<00:12, 13.27it/s] 87%|βββββββββ | 1117/1280 [01:23<00:13, 12.31it/s] 87%|βββββββββ | 1119/1280 [01:24<00:12, 13.07it/s] 88%|βββββββββ | 1121/1280 [01:24<00:12, 13.13it/s] 88%|βββββββββ | 1123/1280 [01:24<00:11, 13.31it/s] 88%|βββββββββ | 1125/1280 [01:24<00:11, 13.65it/s] 88%|βββββββββ | 1127/1280 [01:24<00:11, 13.75it/s] 88%|βββββββββ | 1129/1280 [01:24<00:10, 14.13it/s] 88%|βββββββββ | 1131/1280 [01:24<00:10, 14.35it/s] 89%|βββββββββ | 1133/1280 [01:25<00:11, 13.11it/s] 89%|βββββββββ | 1135/1280 [01:25<00:10, 13.60it/s] 89%|βββββββββ | 1137/1280 [01:25<00:10, 13.88it/s] 89%|βββββββββ | 1139/1280 [01:25<00:10, 13.98it/s] 89%|βββββββββ | 1141/1280 [01:25<00:10, 13.36it/s] 89%|βββββββββ | 1143/1280 [01:25<00:09, 13.85it/s] 89%|βββββββββ | 1145/1280 [01:25<00:09, 14.33it/s] 90%|βββββββββ | 1147/1280 [01:26<00:10, 13.08it/s] 90%|βββββββββ | 1149/1280 [01:26<00:09, 13.74it/s] 90%|βββββββββ | 1151/1280 [01:26<00:09, 13.89it/s] 90%|βββββββββ | 1153/1280 [01:26<00:10, 12.70it/s] 90%|βββββββββ | 1155/1280 [01:26<00:09, 13.40it/s] 90%|βββββββββ | 1157/1280 [01:26<00:09, 13.65it/s] 91%|βββββββββ | 1159/1280 [01:26<00:08, 14.00it/s] 91%|βββββββββ | 1161/1280 [01:27<00:08, 14.15it/s] 91%|βββββββββ | 1163/1280 [01:27<00:08, 13.21it/s] 91%|βββββββββ | 1165/1280 [01:27<00:09, 12.44it/s] 91%|βββββββββ | 1167/1280 [01:27<00:08, 13.09it/s] 91%|ββββββββββ| 1169/1280 [01:27<00:08, 12.61it/s] 91%|ββββββββββ| 1171/1280 [01:27<00:09, 11.76it/s] 92%|ββββββββββ| 1173/1280 [01:28<00:09, 11.13it/s] 92%|ββββββββββ| 1175/1280 [01:28<00:08, 11.70it/s] 92%|ββββββββββ| 1177/1280 [01:28<00:08, 12.50it/s] 92%|ββββββββββ| 1179/1280 [01:28<00:08, 12.46it/s] 92%|ββββββββββ| 1181/1280 [01:28<00:07, 13.15it/s] 92%|ββββββββββ| 1183/1280 [01:28<00:07, 13.68it/s] 93%|ββββββββββ| 1185/1280 [01:29<00:06, 13.86it/s] 93%|ββββββββββ| 1187/1280 [01:29<00:07, 12.31it/s] 93%|ββββββββββ| 1189/1280 [01:29<00:07, 12.85it/s] 93%|ββββββββββ| 1191/1280 [01:29<00:06, 13.57it/s] 93%|ββββββββββ| 1193/1280 [01:29<00:06, 13.60it/s] 93%|ββββββββββ| 1195/1280 [01:29<00:06, 13.90it/s] 94%|ββββββββββ| 1197/1280 [01:29<00:05, 14.01it/s] 94%|ββββββββββ| 1199/1280 [01:30<00:05, 14.44it/s] 94%|ββββββββββ| 1201/1280 [01:30<00:05, 14.41it/s] 94%|ββββββββββ| 1203/1280 [01:30<00:05, 14.31it/s] 94%|ββββββββββ| 1205/1280 [01:30<00:05, 14.43it/s] 94%|ββββββββββ| 1207/1280 [01:30<00:05, 14.51it/s] 94%|ββββββββββ| 1209/1280 [01:30<00:05, 13.64it/s] 95%|ββββββββββ| 1211/1280 [01:30<00:04, 13.84it/s] 95%|ββββββββββ| 1213/1280 [01:31<00:04, 13.71it/s] 95%|ββββββββββ| 1215/1280 [01:31<00:04, 13.37it/s] 95%|ββββββββββ| 1217/1280 [01:31<00:04, 13.88it/s] 95%|ββββββββββ| 1219/1280 [01:31<00:04, 14.40it/s] 95%|ββββββββββ| 1221/1280 [01:31<00:04, 13.72it/s] 96%|ββββββββββ| 1223/1280 [01:31<00:04, 13.38it/s] 96%|ββββββββββ| 1225/1280 [01:31<00:03, 13.90it/s] 96%|ββββββββββ| 1227/1280 [01:32<00:03, 13.56it/s] 96%|ββββββββββ| 1229/1280 [01:32<00:03, 13.89it/s] 96%|ββββββββββ| 1231/1280 [01:32<00:03, 13.30it/s] 96%|ββββββββββ| 1233/1280 [01:32<00:03, 13.89it/s] 96%|ββββββββββ| 1235/1280 [01:32<00:03, 14.07it/s] 97%|ββββββββββ| 1237/1280 [01:32<00:03, 13.96it/s] 97%|ββββββββββ| 1239/1280 [01:32<00:02, 13.89it/s] 97%|ββββββββββ| 1241/1280 [01:33<00:02, 13.93it/s] 97%|ββββββββββ| 1243/1280 [01:33<00:02, 14.01it/s] 97%|ββββββββββ| 1245/1280 [01:33<00:02, 14.14it/s] 97%|ββββββββββ| 1247/1280 [01:33<00:02, 13.94it/s] 98%|ββββββββββ| 1249/1280 [01:33<00:02, 14.24it/s] 98%|ββββββββββ| 1251/1280 [01:33<00:02, 14.24it/s] 98%|ββββββββββ| 1253/1280 [01:33<00:01, 14.54it/s] 98%|ββββββββββ| 1255/1280 [01:34<00:01, 14.18it/s] 98%|ββββββββββ| 1257/1280 [01:34<00:01, 13.97it/s] 98%|ββββββββββ| 1259/1280 [01:34<00:01, 13.75it/s] 99%|ββββββββββ| 1261/1280 [01:34<00:01, 13.85it/s] 99%|ββββββββββ| 1263/1280 [01:34<00:01, 14.29it/s] 99%|ββββββββββ| 1265/1280 [01:34<00:01, 12.84it/s] 99%|ββββββββββ| 1267/1280 [01:35<00:01, 12.50it/s] 99%|ββββββββββ| 1269/1280 [01:35<00:00, 13.25it/s] 99%|ββββββββββ| 1271/1280 [01:35<00:00, 13.50it/s] 99%|ββββββββββ| 1273/1280 [01:35<00:00, 13.58it/s] 100%|ββββββββββ| 1275/1280 [01:35<00:00, 13.42it/s] 100%|ββββββββββ| 1277/1280 [01:35<00:00, 13.66it/s] 100%|ββββββββββ| 1279/1280 [01:35<00:00, 13.79it/s][INFO|trainer.py:1761] 2022-07-22 12:33:45,822 >> Training completed. Do not forget to share your model on huggingface.co/models =) {'train_runtime': 95.9834, 'train_samples_per_second': 426.48, 'train_steps_per_second': 13.336, 'train_loss': 0.4583479344844818, 'epoch': 1.0} 100%|ββββββββββ| 1280/1280 [01:35<00:00, 13.79it/s] 100%|ββββββββββ| 1280/1280 [01:35<00:00, 13.34it/s] [INFO|trainer.py:2503] 2022-07-22 12:33:45,829 >> Saving model checkpoint to runs/ebmnlp_hf/BioLinkBERT-base [INFO|configuration_utils.py:446] 2022-07-22 12:33:45,831 >> Configuration saved in runs/ebmnlp_hf/BioLinkBERT-base/config.json [INFO|modeling_utils.py:1660] 2022-07-22 12:33:46,435 >> Model weights saved in runs/ebmnlp_hf/BioLinkBERT-base/pytorch_model.bin [INFO|tokenization_utils_base.py:2123] 2022-07-22 12:33:46,436 >> tokenizer config file saved in runs/ebmnlp_hf/BioLinkBERT-base/tokenizer_config.json [INFO|tokenization_utils_base.py:2130] 2022-07-22 12:33:46,436 >> Special tokens file saved in runs/ebmnlp_hf/BioLinkBERT-base/special_tokens_map.json ***** train metrics ***** epoch = 1.0 train_loss = 0.4583 train_runtime = 0:01:35.98 train_samples = 40935 train_samples_per_second = 426.48 train_steps_per_second = 13.336 07/22/2022 12:33:46 - INFO - __main__ - *** Evaluate *** [INFO|trainer.py:661] 2022-07-22 12:33:46,477 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, word_ids, tokens. If id, ner_tags, word_ids, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message. [INFO|trainer.py:2753] 2022-07-22 12:33:46,479 >> ***** Running Evaluation ***** [INFO|trainer.py:2755] 2022-07-22 12:33:46,479 >> Num examples = 10386 [INFO|trainer.py:2758] 2022-07-22 12:33:46,479 >> Batch size = 8 0%| | 0/1299 [00:00<?, ?it/s] 1%| | 8/1299 [00:00<00:17, 72.89it/s] 1%| | 16/1299 [00:00<00:19, 67.39it/s] 2%|β | 23/1299 [00:00<00:19, 65.81it/s] 2%|β | 30/1299 [00:00<00:19, 64.92it/s] 3%|β | 37/1299 [00:00<00:19, 64.65it/s] 3%|β | 44/1299 [00:00<00:19, 64.42it/s] 4%|β | 51/1299 [00:00<00:19, 64.17it/s] 4%|β | 58/1299 [00:00<00:19, 64.09it/s] 5%|β | 65/1299 [00:01<00:19, 64.00it/s] 6%|β | 72/1299 [00:01<00:19, 63.66it/s] 6%|β | 79/1299 [00:01<00:19, 63.73it/s] 7%|β | 86/1299 [00:01<00:18, 63.85it/s] 7%|β | 93/1299 [00:01<00:19, 63.44it/s] 8%|β | 100/1299 [00:01<00:18, 63.49it/s] 8%|β | 107/1299 [00:01<00:18, 63.51it/s] 9%|β | 114/1299 [00:01<00:18, 63.49it/s] 9%|β | 121/1299 [00:01<00:18, 63.40it/s] 10%|β | 128/1299 [00:01<00:18, 63.44it/s] 10%|β | 135/1299 [00:02<00:18, 63.42it/s] 11%|β | 142/1299 [00:02<00:18, 63.51it/s] 11%|ββ | 149/1299 [00:02<00:18, 63.64it/s] 12%|ββ | 156/1299 [00:02<00:17, 63.63it/s] 13%|ββ | 163/1299 [00:02<00:17, 63.62it/s] 13%|ββ | 170/1299 [00:02<00:17, 63.74it/s] 14%|ββ | 177/1299 [00:02<00:17, 63.73it/s] 14%|ββ | 184/1299 [00:02<00:17, 63.49it/s] 15%|ββ | 191/1299 [00:02<00:17, 63.53it/s] 15%|ββ | 198/1299 [00:03<00:17, 63.77it/s] 16%|ββ | 205/1299 [00:03<00:17, 63.78it/s] 16%|ββ | 212/1299 [00:03<00:17, 63.85it/s] 17%|ββ | 219/1299 [00:03<00:16, 63.83it/s] 17%|ββ | 226/1299 [00:03<00:16, 63.83it/s] 18%|ββ | 233/1299 [00:03<00:16, 63.89it/s] 18%|ββ | 240/1299 [00:03<00:16, 63.93it/s] 19%|ββ | 247/1299 [00:03<00:16, 63.88it/s] 20%|ββ | 254/1299 [00:03<00:16, 63.93it/s] 20%|ββ | 261/1299 [00:04<00:16, 64.00it/s] 21%|ββ | 268/1299 [00:04<00:16, 63.84it/s] 21%|ββ | 275/1299 [00:04<00:16, 63.91it/s] 22%|βββ | 282/1299 [00:04<00:15, 63.85it/s] 22%|βββ | 289/1299 [00:04<00:15, 63.79it/s] 23%|βββ | 296/1299 [00:04<00:15, 63.79it/s] 23%|βββ | 303/1299 [00:04<00:15, 63.75it/s] 24%|βββ | 310/1299 [00:04<00:15, 63.86it/s] 24%|βββ | 317/1299 [00:04<00:15, 63.86it/s] 25%|βββ | 324/1299 [00:05<00:15, 63.81it/s] 25%|βββ | 331/1299 [00:05<00:15, 63.97it/s] 26%|βββ | 338/1299 [00:05<00:15, 63.88it/s] 27%|βββ | 345/1299 [00:05<00:14, 63.83it/s] 27%|βββ | 352/1299 [00:05<00:14, 63.92it/s] 28%|βββ | 359/1299 [00:05<00:14, 63.93it/s] 28%|βββ | 366/1299 [00:05<00:14, 63.96it/s] 29%|βββ | 373/1299 [00:05<00:14, 63.97it/s] 29%|βββ | 380/1299 [00:05<00:14, 63.79it/s] 30%|βββ | 387/1299 [00:06<00:14, 63.70it/s] 30%|βββ | 394/1299 [00:06<00:14, 63.63it/s] 31%|βββ | 401/1299 [00:06<00:14, 63.61it/s] 31%|ββββ | 408/1299 [00:06<00:13, 63.87it/s] 32%|ββββ | 415/1299 [00:06<00:13, 63.91it/s] 32%|ββββ | 422/1299 [00:06<00:13, 63.84it/s] 33%|ββββ | 429/1299 [00:06<00:13, 63.82it/s] 34%|ββββ | 436/1299 [00:06<00:13, 63.95it/s] 34%|ββββ | 443/1299 [00:06<00:13, 64.01it/s] 35%|ββββ | 450/1299 [00:07<00:13, 64.08it/s] 35%|ββββ | 457/1299 [00:07<00:13, 64.04it/s] 36%|ββββ | 464/1299 [00:07<00:13, 64.04it/s] 36%|ββββ | 471/1299 [00:07<00:12, 63.94it/s] 37%|ββββ | 478/1299 [00:07<00:12, 63.82it/s] 37%|ββββ | 485/1299 [00:07<00:12, 63.94it/s] 38%|ββββ | 492/1299 [00:07<00:12, 63.98it/s] 38%|ββββ | 499/1299 [00:07<00:12, 63.71it/s] 39%|ββββ | 506/1299 [00:07<00:12, 63.79it/s] 39%|ββββ | 513/1299 [00:08<00:12, 63.83it/s] 40%|ββββ | 520/1299 [00:08<00:12, 63.85it/s] 41%|ββββ | 527/1299 [00:08<00:12, 63.80it/s] 41%|ββββ | 534/1299 [00:08<00:11, 63.76it/s] 42%|βββββ | 541/1299 [00:08<00:11, 63.91it/s] 42%|βββββ | 548/1299 [00:08<00:11, 64.07it/s] 43%|βββββ | 555/1299 [00:08<00:11, 64.08it/s] 43%|βββββ | 562/1299 [00:08<00:11, 64.13it/s] 44%|βββββ | 569/1299 [00:08<00:11, 64.11it/s] 44%|βββββ | 576/1299 [00:09<00:11, 63.91it/s] 45%|βββββ | 583/1299 [00:09<00:11, 63.98it/s] 45%|βββββ | 590/1299 [00:09<00:11, 63.98it/s] 46%|βββββ | 597/1299 [00:09<00:10, 63.98it/s] 46%|βββββ | 604/1299 [00:09<00:10, 63.92it/s] 47%|βββββ | 611/1299 [00:09<00:10, 63.88it/s] 48%|βββββ | 618/1299 [00:09<00:10, 63.96it/s] 48%|βββββ | 625/1299 [00:09<00:10, 63.78it/s] 49%|βββββ | 632/1299 [00:09<00:10, 63.83it/s] 49%|βββββ | 639/1299 [00:10<00:10, 63.16it/s] 50%|βββββ | 646/1299 [00:10<00:10, 63.26it/s] 50%|βββββ | 653/1299 [00:10<00:10, 63.41it/s] 51%|βββββ | 660/1299 [00:10<00:10, 63.57it/s] 51%|ββββββ | 667/1299 [00:10<00:09, 63.45it/s] 52%|ββββββ | 674/1299 [00:10<00:09, 63.64it/s] 52%|ββββββ | 681/1299 [00:10<00:09, 63.78it/s] 53%|ββββββ | 688/1299 [00:10<00:09, 63.51it/s] 54%|ββββββ | 695/1299 [00:10<00:09, 63.66it/s] 54%|ββββββ | 702/1299 [00:10<00:09, 63.93it/s] 55%|ββββββ | 709/1299 [00:11<00:09, 63.86it/s] 55%|ββββββ | 716/1299 [00:11<00:09, 63.83it/s] 56%|ββββββ | 723/1299 [00:11<00:09, 63.78it/s] 56%|ββββββ | 730/1299 [00:11<00:08, 63.93it/s] 57%|ββββββ | 737/1299 [00:11<00:08, 63.81it/s] 57%|ββββββ | 744/1299 [00:11<00:08, 63.86it/s] 58%|ββββββ | 751/1299 [00:11<00:08, 64.02it/s] 58%|ββββββ | 758/1299 [00:11<00:08, 63.98it/s] 59%|ββββββ | 765/1299 [00:11<00:08, 63.95it/s] 59%|ββββββ | 772/1299 [00:12<00:08, 63.90it/s] 60%|ββββββ | 779/1299 [00:12<00:08, 64.10it/s] 61%|ββββββ | 786/1299 [00:12<00:08, 64.00it/s] 61%|ββββββ | 793/1299 [00:12<00:07, 64.00it/s] 62%|βββββββ | 800/1299 [00:12<00:07, 64.06it/s] 62%|βββββββ | 807/1299 [00:12<00:07, 64.12it/s] 63%|βββββββ | 814/1299 [00:12<00:07, 64.01it/s] 63%|βββββββ | 821/1299 [00:12<00:07, 63.89it/s] 64%|βββββββ | 828/1299 [00:12<00:07, 63.90it/s] 64%|βββββββ | 835/1299 [00:13<00:07, 63.95it/s] 65%|βββββββ | 842/1299 [00:13<00:07, 63.95it/s] 65%|βββββββ | 849/1299 [00:13<00:07, 64.02it/s] 66%|βββββββ | 856/1299 [00:13<00:06, 63.86it/s] 66%|βββββββ | 863/1299 [00:13<00:06, 63.76it/s] 67%|βββββββ | 870/1299 [00:13<00:06, 63.72it/s] 68%|βββββββ | 877/1299 [00:13<00:06, 63.71it/s] 68%|βββββββ | 884/1299 [00:13<00:06, 63.77it/s] 69%|βββββββ | 891/1299 [00:13<00:06, 63.70it/s] 69%|βββββββ | 898/1299 [00:14<00:06, 63.74it/s] 70%|βββββββ | 905/1299 [00:14<00:06, 63.77it/s] 70%|βββββββ | 912/1299 [00:14<00:06, 63.83it/s] 71%|βββββββ | 919/1299 [00:14<00:05, 63.81it/s] 71%|ββββββββ | 926/1299 [00:14<00:05, 63.89it/s] 72%|ββββββββ | 933/1299 [00:14<00:05, 63.91it/s] 72%|ββββββββ | 940/1299 [00:14<00:05, 63.97it/s] 73%|ββββββββ | 947/1299 [00:14<00:05, 63.93it/s] 73%|ββββββββ | 954/1299 [00:14<00:05, 63.87it/s] 74%|ββββββββ | 961/1299 [00:15<00:05, 63.71it/s] 75%|ββββββββ | 968/1299 [00:15<00:05, 63.72it/s] 75%|ββββββββ | 975/1299 [00:15<00:05, 63.85it/s] 76%|ββββββββ | 982/1299 [00:15<00:04, 63.93it/s] 76%|ββββββββ | 989/1299 [00:15<00:04, 64.09it/s] 77%|ββββββββ | 996/1299 [00:15<00:04, 63.93it/s] 77%|ββββββββ | 1003/1299 [00:15<00:04, 63.89it/s] 78%|ββββββββ | 1010/1299 [00:15<00:04, 63.70it/s] 78%|ββββββββ | 1017/1299 [00:15<00:04, 63.75it/s] 79%|ββββββββ | 1024/1299 [00:16<00:04, 63.72it/s] 79%|ββββββββ | 1031/1299 [00:16<00:04, 63.68it/s] 80%|ββββββββ | 1038/1299 [00:16<00:04, 63.76it/s] 80%|ββββββββ | 1045/1299 [00:16<00:03, 63.74it/s] 81%|ββββββββ | 1052/1299 [00:16<00:03, 63.94it/s] 82%|βββββββββ | 1059/1299 [00:16<00:03, 63.78it/s] 82%|βββββββββ | 1066/1299 [00:16<00:03, 63.74it/s] 83%|βββββββββ | 1073/1299 [00:16<00:03, 63.66it/s] 83%|βββββββββ | 1080/1299 [00:16<00:03, 63.61it/s] 84%|βββββββββ | 1087/1299 [00:17<00:03, 63.64it/s] 84%|βββββββββ | 1094/1299 [00:17<00:03, 63.80it/s] 85%|βββββββββ | 1101/1299 [00:17<00:03, 63.68it/s] 85%|βββββββββ | 1108/1299 [00:17<00:02, 63.77it/s] 86%|βββββββββ | 1115/1299 [00:17<00:02, 63.84it/s] 86%|βββββββββ | 1122/1299 [00:17<00:02, 63.74it/s] 87%|βββββββββ | 1129/1299 [00:17<00:02, 63.80it/s] 87%|βββββββββ | 1136/1299 [00:17<00:02, 63.93it/s] 88%|βββββββββ | 1143/1299 [00:17<00:02, 63.94it/s] 89%|βββββββββ | 1150/1299 [00:18<00:02, 63.91it/s] 89%|βββββββββ | 1157/1299 [00:18<00:02, 63.89it/s] 90%|βββββββββ | 1164/1299 [00:18<00:02, 63.84it/s] 90%|βββββββββ | 1171/1299 [00:18<00:02, 63.95it/s] 91%|βββββββββ | 1178/1299 [00:18<00:01, 63.95it/s] 91%|βββββββββ | 1185/1299 [00:18<00:01, 64.14it/s] 92%|ββββββββββ| 1192/1299 [00:18<00:01, 63.65it/s] 92%|ββββββββββ| 1199/1299 [00:18<00:01, 63.71it/s] 93%|ββββββββββ| 1206/1299 [00:18<00:01, 63.56it/s] 93%|ββββββββββ| 1213/1299 [00:18<00:01, 63.57it/s] 94%|ββββββββββ| 1220/1299 [00:19<00:01, 63.33it/s] 94%|ββββββββββ| 1227/1299 [00:19<00:01, 63.43it/s] 95%|ββββββββββ| 1234/1299 [00:19<00:01, 63.49it/s] 96%|ββββββββββ| 1241/1299 [00:19<00:00, 63.46it/s] 96%|ββββββββββ| 1248/1299 [00:19<00:00, 63.52it/s] 97%|ββββββββββ| 1255/1299 [00:19<00:00, 63.43it/s] 97%|ββββββββββ| 1262/1299 [00:19<00:00, 63.53it/s] 98%|ββββββββββ| 1269/1299 [00:19<00:00, 63.51it/s] 98%|ββββββββββ| 1276/1299 [00:19<00:00, 63.48it/s] 99%|ββββββββββ| 1283/1299 [00:20<00:00, 63.54it/s] 99%|ββββββββββ| 1290/1299 [00:20<00:00, 63.50it/s] 100%|ββββββββββ| 1297/1299 [00:20<00:00, 63.56it/s]07/22/2022 12:34:13 - INFO - datasets.metric - Removing /home/hungthinht/.cache/huggingface/metrics/seqeval/default/default_experiment-1-0.arrow type_name INT type_name OUT type_name PAR 100%|ββββββββββ| 1299/1299 [00:26<00:00, 48.70it/s] ***** eval metrics ***** epoch = 1.0 eval_loss = 0.4264 eval_macro_f1 = 0.7191 eval_macro_precision = 0.7641 eval_macro_recall = 0.6793 eval_runtime = 0:00:26.69 eval_samples = 10386 eval_samples_per_second = 389.133 eval_steps_per_second = 48.67 07/22/2022 12:34:13 - INFO - __main__ - *** Predict *** [INFO|trainer.py:661] 2022-07-22 12:34:13,176 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, ner_tags, word_ids, tokens. If id, ner_tags, word_ids, tokens are not expected by `BertForTokenClassification.forward`, you can safely ignore this message. [INFO|trainer.py:2753] 2022-07-22 12:34:13,177 >> ***** Running Prediction ***** [INFO|trainer.py:2755] 2022-07-22 12:34:13,178 >> Num examples = 2076 [INFO|trainer.py:2758] 2022-07-22 12:34:13,178 >> Batch size = 8 0%| | 0/260 [00:00<?, ?it/s] 3%|β | 8/260 [00:00<00:03, 72.67it/s] 6%|β | 16/260 [00:00<00:03, 67.39it/s] 9%|β | 23/260 [00:00<00:03, 66.06it/s] 12%|ββ | 30/260 [00:00<00:03, 65.17it/s] 14%|ββ | 37/260 [00:00<00:03, 64.44it/s] 17%|ββ | 44/260 [00:00<00:03, 64.25it/s] 20%|ββ | 51/260 [00:00<00:03, 64.15it/s] 22%|βββ | 58/260 [00:00<00:03, 64.02it/s] 25%|βββ | 65/260 [00:01<00:03, 63.86it/s] 28%|βββ | 72/260 [00:01<00:02, 63.76it/s] 30%|βββ | 79/260 [00:01<00:02, 63.78it/s] 33%|ββββ | 86/260 [00:01<00:02, 63.62it/s] 36%|ββββ | 93/260 [00:01<00:02, 63.55it/s] 38%|ββββ | 100/260 [00:01<00:02, 63.62it/s] 41%|ββββ | 107/260 [00:01<00:02, 63.78it/s] 44%|βββββ | 114/260 [00:01<00:02, 63.79it/s] 47%|βββββ | 121/260 [00:01<00:02, 63.79it/s] 49%|βββββ | 128/260 [00:01<00:02, 63.72it/s] 52%|ββββββ | 135/260 [00:02<00:01, 63.79it/s] 55%|ββββββ | 142/260 [00:02<00:01, 63.71it/s] 57%|ββββββ | 149/260 [00:02<00:01, 63.77it/s] 60%|ββββββ | 156/260 [00:02<00:01, 63.98it/s] 63%|βββββββ | 163/260 [00:02<00:01, 64.06it/s] 65%|βββββββ | 170/260 [00:02<00:01, 64.05it/s] 68%|βββββββ | 177/260 [00:02<00:01, 64.01it/s] 71%|βββββββ | 184/260 [00:02<00:01, 64.00it/s] 73%|ββββββββ | 191/260 [00:02<00:01, 63.86it/s] 76%|ββββββββ | 198/260 [00:03<00:00, 63.89it/s] 79%|ββββββββ | 205/260 [00:03<00:00, 63.87it/s] 82%|βββββββββ | 212/260 [00:03<00:00, 63.81it/s] 84%|βββββββββ | 219/260 [00:03<00:00, 63.78it/s] 87%|βββββββββ | 226/260 [00:03<00:00, 63.68it/s] 90%|βββββββββ | 233/260 [00:03<00:00, 63.76it/s] 92%|ββββββββββ| 240/260 [00:03<00:00, 63.85it/s] 95%|ββββββββββ| 247/260 [00:03<00:00, 63.75it/s] 98%|ββββββββββ| 254/260 [00:03<00:00, 63.90it/s]07/22/2022 12:34:18 - INFO - datasets.metric - Removing /home/hungthinht/.cache/huggingface/metrics/seqeval/default/default_experiment-1-0.arrow type_name INT type_name OUT type_name PAR ***** test metrics ***** test_loss = 0.4043 test_macro_f1 = 0.7406 test_macro_precision = 0.7578 test_macro_recall = 0.7467 test_runtime = 0:00:05.17 test_samples = 2076 test_samples_per_second = 401.101 test_steps_per_second = 50.234 100%|ββββββββββ| 260/260 [00:07<00:00, 36.10it/s] |