Commit
·
9135ccf
1
Parent(s):
8e9cb88
Update README.md
Browse files
README.md
CHANGED
|
@@ -37,8 +37,6 @@ This model is intended for transcribing spoken Javanese language from audio reco
|
|
| 37 |
|
| 38 |
The model use OpenSLR41 datasets, and split into 2 section (training and testing), then the model is trained using 1xA100 GPU with a training duration of 4-5 hours.
|
| 39 |
|
| 40 |
-
## Training procedure
|
| 41 |
-
|
| 42 |
### Training hyperparameters
|
| 43 |
|
| 44 |
The following hyperparameters were used during training:
|
|
@@ -79,6 +77,90 @@ The following hyperparameters were used during training:
|
|
| 79 |
| 0.0328 | 59.4901 | 42000 | 0.2887 | 0.1654 |
|
| 80 |
| 0.0324 | 62.3229 | 44000 | 0.2843 | 0.1502 |
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
### Framework versions
|
| 84 |
|
|
|
|
| 37 |
|
| 38 |
The model use OpenSLR41 datasets, and split into 2 section (training and testing), then the model is trained using 1xA100 GPU with a training duration of 4-5 hours.
|
| 39 |
|
|
|
|
|
|
|
| 40 |
### Training hyperparameters
|
| 41 |
|
| 42 |
The following hyperparameters were used during training:
|
|
|
|
| 77 |
| 0.0328 | 59.4901 | 42000 | 0.2887 | 0.1654 |
|
| 78 |
| 0.0324 | 62.3229 | 44000 | 0.2843 | 0.1502 |
|
| 79 |
|
| 80 |
+
### How to run (Gradio Web)
|
| 81 |
+
```python
|
| 82 |
+
import torch
|
| 83 |
+
import torchaudio
|
| 84 |
+
import gradio as gr
|
| 85 |
+
import numpy as np
|
| 86 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCTC
|
| 87 |
+
|
| 88 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 89 |
+
|
| 90 |
+
# Load the model and processor
|
| 91 |
+
MODEL_NAME = "<fill this to your model>"
|
| 92 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 93 |
+
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
| 94 |
+
|
| 95 |
+
# Move model to GPU
|
| 96 |
+
model.to(device)
|
| 97 |
+
|
| 98 |
+
# Create the pipeline with the model and processor
|
| 99 |
+
transcriber = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=device)
|
| 100 |
+
|
| 101 |
+
def transcribe(audio):
|
| 102 |
+
sr, y = audio
|
| 103 |
+
y = y.astype(np.float32)
|
| 104 |
+
y /= np.max(np.abs(y))
|
| 105 |
+
|
| 106 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
| 107 |
+
|
| 108 |
+
demo = gr.Interface(
|
| 109 |
+
transcribe,
|
| 110 |
+
gr.Audio(sources=["upload"]),
|
| 111 |
+
"text",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
demo.launch(share=True)
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
### How to run
|
| 118 |
+
```python
|
| 119 |
+
import torch
|
| 120 |
+
import torchaudio
|
| 121 |
+
import gradio as gr
|
| 122 |
+
import numpy as np
|
| 123 |
+
from transformers import pipeline, AutoProcessor, AutoModelForCTC
|
| 124 |
+
|
| 125 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 126 |
+
|
| 127 |
+
# Load the model and processor
|
| 128 |
+
MODEL_NAME = "<fill this to actual model>"
|
| 129 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 130 |
+
model = AutoModelForCTC.from_pretrained(MODEL_NAME)
|
| 131 |
+
|
| 132 |
+
# Move model to GPU
|
| 133 |
+
model.to(device)
|
| 134 |
+
|
| 135 |
+
# Load audio file
|
| 136 |
+
AUDIO_PATH = "<replace 'path_to_audio_file.wav' with the actual path to your audio file>"
|
| 137 |
+
audio_input, sample_rate = torchaudio.load(AUDIO_PATH)
|
| 138 |
+
|
| 139 |
+
# Ensure the audio is mono (1 channel)
|
| 140 |
+
if audio_input.shape[0] > 1:
|
| 141 |
+
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
|
| 142 |
+
|
| 143 |
+
# Resample audio if necessary
|
| 144 |
+
if sample_rate != 16000:
|
| 145 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
| 146 |
+
audio_input = resampler(audio_input)
|
| 147 |
+
|
| 148 |
+
# Process the audio input
|
| 149 |
+
input_values = processor(audio_input.squeeze(), sampling_rate=16000, return_tensors="pt").input_values
|
| 150 |
+
|
| 151 |
+
# Move input values to GPU
|
| 152 |
+
input_values = input_values.to(device)
|
| 153 |
+
|
| 154 |
+
# Perform inference
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
logits = model(input_values).logits
|
| 157 |
+
|
| 158 |
+
# Decode the logits to text
|
| 159 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 160 |
+
transcription = processor.batch_decode(predicted_ids)[0]
|
| 161 |
+
|
| 162 |
+
print("Transcription:", transcription)
|
| 163 |
+
```
|
| 164 |
|
| 165 |
### Framework versions
|
| 166 |
|