# DeCLUTR-small ## Model description The "DeCLUTR-small" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). #### How to use ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-small") model = AutoModel.from_pretrained("johngiorgi/declutr-small") # Prepare some text to embed text = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output, _ = model(**inputs, output_hidden_states=False) # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @article{Giorgi2020DeCLUTRDC, title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations}, author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang}, journal={ArXiv}, year={2020}, volume={abs/2006.03659} } ```