Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-nd-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- reward model
|
8 |
+
- RLHF
|
9 |
+
- medical
|
10 |
+
---
|
11 |
+
|
12 |
+
# JSL-MedMNX-7B-SFT
|
13 |
+
|
14 |
+
JSL-MedMNX-7B-SFT is an SFT - finetuned on an alpaca format 11k medical dataset over the base model [JSL-MedMNX-7B](https://huggingface.co/johnsnowlabs/JSL-MedMNX-7B). This model is on average 2 points better than the base model on [Open Medical LLM Leaderboard](https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard).
|
15 |
+
|
16 |
+

|
17 |
+
|
18 |
+
## 💻 Usage
|
19 |
+
|
20 |
+
```python
|
21 |
+
!pip install -qU transformers accelerate
|
22 |
+
|
23 |
+
from transformers import AutoTokenizer
|
24 |
+
import transformers
|
25 |
+
import torch
|
26 |
+
|
27 |
+
model = "johnsnowlabs/JSL-MedMNX-7B-SFT"
|
28 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
29 |
+
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
31 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
32 |
+
pipeline = transformers.pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=model,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
device_map="auto",
|
37 |
+
)
|
38 |
+
|
39 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
40 |
+
print(outputs[0]["generated_text"])
|
41 |
+
```
|
42 |
+
## 🏆 Evaluation
|
43 |
+
|
44 |
+
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|
45 |
+
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
|
46 |
+
|stem |N/A |none | 0|acc_norm|0.5209|± |0.0068|
|
47 |
+
| | |none | 0|acc |0.5675|± |0.0058|
|
48 |
+
| - medmcqa |Yaml |none | 0|acc |0.5152|± |0.0077|
|
49 |
+
| | |none | 0|acc_norm|0.5152|± |0.0077|
|
50 |
+
| - medqa_4options |Yaml |none | 0|acc |0.5397|± |0.0140|
|
51 |
+
| | |none | 0|acc_norm|0.5397|± |0.0140|
|
52 |
+
| - anatomy (mmlu) | 0|none | 0|acc |0.6593|± |0.0409|
|
53 |
+
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7245|± |0.0275|
|
54 |
+
| - college_biology (mmlu) | 0|none | 0|acc |0.7431|± |0.0365|
|
55 |
+
| - college_medicine (mmlu) | 0|none | 0|acc |0.6532|± |0.0363|
|
56 |
+
| - medical_genetics (mmlu) | 0|none | 0|acc |0.7300|± |0.0446|
|
57 |
+
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7206|± |0.0273|
|
58 |
+
| - pubmedqa | 1|none | 0|acc |0.7720|± |0.0188|
|
59 |
+
|
60 |
+
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr|
|
61 |
+
|------|-------|------|-----:|--------|-----:|---|-----:|
|
62 |
+
|stem |N/A |none | 0|acc_norm|0.5209|± |0.0068|
|
63 |
+
| | |none | 0|acc |0.5675|± |0.0058|
|