Commit
·
9b671fd
1
Parent(s):
f6a9332
docs: Custom README
Browse files
README.md
CHANGED
@@ -1,14 +1,67 @@
|
|
1 |
---
|
2 |
library_name: keras
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
5 |
## Model description
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
## Intended uses & limitations
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
## Training and evaluation data
|
14 |
|
|
|
1 |
---
|
2 |
library_name: keras
|
3 |
+
tags:
|
4 |
+
- burmese
|
5 |
+
- burma
|
6 |
+
- myanmar
|
7 |
+
- snake
|
8 |
+
- classifier
|
9 |
---
|
10 |
|
11 |
## Model description
|
12 |
|
13 |
+
MM DeepSnake is an artificial intelligence project to classify snake species in Myanmar.
|
14 |
+
We collect images all around Myanmar for training our model.
|
15 |
+
|
16 |
+
Current Version - **Alpha - 1.0.0**
|
17 |
+
|
18 |
+
Currently our model can understand **10** species of snakes. Some of the snakes are very much in species and hard to classify individual species. Therefore, we took genus as a categories.
|
19 |
+
|
20 |
+
At the moment, we support
|
21 |
+
- Trimeresurus_sp (Asian Palm Pit vipers) - မြွေစိမ်းမြီးခြောက်
|
22 |
+
- Rhadophis helleri (Heller Red necked keelback) - လည်ပင်းနီမြွေ
|
23 |
+
- Lycodon aulicus (Wolf Snake) - မြွေဝံပုလွေ
|
24 |
+
- Fowlea piscator (Checkered Keelback) - ရေမြွေဗျောက်မ
|
25 |
+
- Daboia siamensis (Eastern Russell's viper) - မြွေပွေး
|
26 |
+
- Chrysopelea ornata (Golden Tree Snake) - ထန်းမြွေ
|
27 |
+
- Bungarus fasciatus (Banded Krait) - ငန်းတော်ကြား
|
28 |
+
- Ophiophagus hannah(King Cobra) - တောကြီးမြွေဟောက်
|
29 |
+
- Laticauda colubrina (Sea Snake) - ဂျက်မြွေ
|
30 |
+
- Naja kaouthia (Cobra) - မြွေဟောက်
|
31 |
+
|
32 |
+
|
33 |
+
Here is sample code to use burmese_snake_classifier
|
34 |
+
|
35 |
+
```python
|
36 |
+
import numpy as np
|
37 |
+
import tensorflow as tf
|
38 |
+
from huggingface_hub import from_pretrained_keras
|
39 |
+
|
40 |
+
pretrained_model = from_pretrained_keras('jojo-ai-mst/burmese_snake_classifier')
|
41 |
+
|
42 |
+
class_names = ['Bungarus fasciatus (Banded Krait)', 'Chrysopelea ornata (Golden Tree Snake)', "Daboia siamensis (Eastern Russell's viper)", 'Fowlea piscator (Checkered Keelback)', 'Laticauda colubrina (Sea Snake)', 'Lycodon aulicus (Wolf Snake)', 'Naja kaouthia(Cobra)', 'Ophiophagus_hannah(King Cobra)', 'Rhadophis helleri (Heller Red necked keelback)', 'Trimeresurus_sp (Asian Palm Pit vipers)']
|
43 |
+
|
44 |
+
def softmax_stable(x):
|
45 |
+
return(np.exp(x - np.max(x)) / np.exp(x - np.max(x)).sum())
|
46 |
+
|
47 |
+
def predict_img(input_img):
|
48 |
+
img_array = np.expand_dims(input_img, 0)
|
49 |
+
predictions = pretrained_model.predict(img_array)
|
50 |
+
score = tf.nn.softmax(predictions[0])
|
51 |
+
|
52 |
+
result = "This image most likely belongs to {} with a {:.2f} percent confidence.".format(class_names[np.argmax(score)], 100 * np.max(score))
|
53 |
+
|
54 |
+
return result
|
55 |
+
|
56 |
+
```
|
57 |
|
58 |
## Intended uses & limitations
|
59 |
|
60 |
+
This model is open source for open source projects.
|
61 |
+
Project that modifies, extends, derives from this model must mention the original model **jojo-ai-mst/burmese_snake_classifier**.
|
62 |
+
Commercial use needs to be requested to the model contributor **jojo-ai-mst**.
|
63 |
+
|
64 |
+
We strongly alert that every **snake bite** case should go to professional medical staffs.
|
65 |
|
66 |
## Training and evaluation data
|
67 |
|