--- tags: - generated_from_trainer datasets: - roneneldan/TinyStories metrics: - accuracy model-index: - name: gpt2_u100_tiny-stories_1024_dpos results: - task: name: Causal Language Modeling type: text-generation dataset: name: roneneldan/TinyStories type: roneneldan/TinyStories metrics: - name: Accuracy type: accuracy value: 0.6900891972857721 --- [Visualize in Weights & Biases](https://wandb.ai/scads-nlp/morph-gpt_gpt2_tiny-stories_dpos/runs/q6cikc5d) # gpt2_u100_tiny-stories_1024_dpos This model is a fine-tuned version of [](https://huggingface.co/) on the roneneldan/TinyStories dataset. It achieves the following results on the evaluation set: - Loss: 1.1688 - Accuracy: 0.6901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 2.8305 | 0.0505 | 1000 | 2.3790 | 0.4650 | | 1.9272 | 0.1009 | 2000 | 1.7501 | 0.5809 | | 1.6793 | 0.1514 | 3000 | 1.5689 | 0.6136 | | 1.5605 | 0.2018 | 4000 | 1.4699 | 0.6316 | | 1.4891 | 0.2523 | 5000 | 1.4112 | 0.6422 | | 1.4391 | 0.3028 | 6000 | 1.3646 | 0.6514 | | 1.3995 | 0.3532 | 7000 | 1.3317 | 0.6575 | | 1.3707 | 0.4037 | 8000 | 1.3021 | 0.6631 | | 1.3424 | 0.4541 | 9000 | 1.2806 | 0.6675 | | 1.3242 | 0.5046 | 10000 | 1.2613 | 0.6714 | | 1.3058 | 0.5551 | 11000 | 1.2435 | 0.6748 | | 1.2888 | 0.6055 | 12000 | 1.2291 | 0.6777 | | 1.2748 | 0.6560 | 13000 | 1.2178 | 0.6801 | | 1.2654 | 0.7064 | 14000 | 1.2077 | 0.6821 | | 1.2549 | 0.7569 | 15000 | 1.1964 | 0.6843 | | 1.2459 | 0.8073 | 16000 | 1.1878 | 0.6860 | | 1.2385 | 0.8578 | 17000 | 1.1819 | 0.6873 | | 1.2286 | 0.9083 | 18000 | 1.1756 | 0.6886 | | 1.2246 | 0.9587 | 19000 | 1.1708 | 0.6896 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.2+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1