File size: 2,153 Bytes
eab6132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language: en
tags:
- bge
- food
- reranking
- sequence-classification
- sentence-similarity
library_name: transformers
pipeline_tag: text-classification
license: mit
---
# Food Re-ranker Model
This is a fine-tuned BGE (BAAI General Embedding) model trained for binary classification of food description pairs. The model determines whether two food descriptions refer to the same item, enabling accurate re-ranking of search results.
## Model Details
### Model Description
- **Base Model**: BAAI/bge-base-en-v1.5
- **Model Type**: bert
- **Task**: Binary classification (food description matching)
- **Output**: Binary classification scores (0 = different foods, 1 = same food)
### Architecture
The model uses the BGE architecture with the following specifications:
- **Hidden Size**: 768
- **Number of Layers**: 12
- **Number of Attention Heads**: 12
- **Intermediate Size**: 3072
- **Maximum Position Embeddings**: 512
- **Vocabulary Size**: 30522
- **Hidden Act**: gelu
### Performance Metrics
Key evaluation metrics on the test set:
## Use Case
Designed for improving food search accuracy by re-ranking initial search results, this model:
- Takes pairs of food descriptions as input
- Determines if they refer to the same food item
- Enables more accurate matching of food descriptions
- Helps surface the most relevant matches in search results
## Training Configuration
- **Batch Size**: 32
- **Learning Rate**: 2e-05
- **Number of Epochs**: 10
- **Warmup Steps**: 0
- **Weight Decay**: 0.01
- **Dropout**: 0.1
- **Attention Dropout**: 0.1
- **Layer Norm Eps**: 1e-12
## Example Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load model
tokenizer = AutoTokenizer.from_pretrained("jonny9f/food_reranker2")
model = AutoModelForSequenceClassification.from_pretrained("jonny9f/food_reranker2")
# Prepare input
query = "chicken breast"
candidate = "grilled chicken breast"
inputs = tokenizer(query, candidate, padding=True, truncation=True, return_tensors="pt")
# Get prediction
outputs = model(**inputs)
score = outputs.logits.softmax(dim=1)[0][1].item() # Score for positive class
```
|