--- library_name: peft license: cc-by-nc-4.0 base_model: mental/mental-roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mental-roberta_depression results: [] --- # mental-roberta_depression This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5389 - Accuracy: 0.7679 - Precision: 0.7676 - Recall: 0.7679 - F1: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8254 | 1.0 | 969 | 0.5788 | 0.7473 | 0.7463 | 0.7473 | 0.7465 | | 0.5832 | 2.0 | 1938 | 0.5451 | 0.7671 | 0.7671 | 0.7671 | 0.7664 | | 0.5514 | 3.0 | 2907 | 0.5389 | 0.7679 | 0.7676 | 0.7679 | 0.7674 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0