Upload folder using huggingface_hub
Browse files- README.md +146 -0
- checkpoint-32/config.json +26 -0
- checkpoint-32/generation_config.json +7 -0
- checkpoint-32/global_step32/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-32/global_step32/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-32/global_step32/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-32/global_step32/mp_rank_00_model_states.pt +3 -0
- checkpoint-32/latest +1 -0
- checkpoint-32/model-00001-of-00003.safetensors +3 -0
- checkpoint-32/model-00002-of-00003.safetensors +3 -0
- checkpoint-32/model-00003-of-00003.safetensors +3 -0
- checkpoint-32/model.safetensors.index.json +298 -0
- checkpoint-32/rng_state_0.pth +3 -0
- checkpoint-32/rng_state_1.pth +3 -0
- checkpoint-32/rng_state_2.pth +3 -0
- checkpoint-32/scheduler.pt +3 -0
- checkpoint-32/trainer_state.json +253 -0
- checkpoint-32/training_args.bin +3 -0
- checkpoint-32/zero_to_fp32.py +604 -0
- config.json +26 -0
- generation_config.json +7 -0
- pytorch_model.bin +3 -0
- runs/Feb15_04-17-13_734ab4bb3394/events.out.tfevents.1707970687.734ab4bb3394.5067.0 +3 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +44 -0
README.md
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
model-index:
|
| 7 |
+
- name: Mistral_FFT
|
| 8 |
+
results: []
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 12 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 13 |
+
|
| 14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 15 |
+
<details><summary>See axolotl config</summary>
|
| 16 |
+
|
| 17 |
+
axolotl version: `0.4.0`
|
| 18 |
+
```yaml
|
| 19 |
+
base_model: mistralai/Mistral-7B-v0.1
|
| 20 |
+
model_type: MistralForCausalLM
|
| 21 |
+
tokenizer_type: LlamaTokenizer
|
| 22 |
+
is_mistral_derived_model: true
|
| 23 |
+
|
| 24 |
+
load_in_8bit: false
|
| 25 |
+
load_in_4bit: false
|
| 26 |
+
strict: false
|
| 27 |
+
|
| 28 |
+
datasets:
|
| 29 |
+
- path: mhenrichsen/alpaca_2k_test
|
| 30 |
+
type: alpaca
|
| 31 |
+
dataset_prepared_path: last_run_prepared
|
| 32 |
+
val_set_size: 0.05
|
| 33 |
+
output_dir: ./Mistral_FFT
|
| 34 |
+
|
| 35 |
+
sequence_len: 4096
|
| 36 |
+
sample_packing: true
|
| 37 |
+
pad_to_sequence_len: true
|
| 38 |
+
|
| 39 |
+
adapter:
|
| 40 |
+
lora_model_dir:
|
| 41 |
+
lora_r:
|
| 42 |
+
lora_alpha:
|
| 43 |
+
lora_dropout:
|
| 44 |
+
lora_target_linear:
|
| 45 |
+
lora_fan_in_fan_out:
|
| 46 |
+
|
| 47 |
+
wandb_project:
|
| 48 |
+
wandb_entity:
|
| 49 |
+
wandb_watch:
|
| 50 |
+
wandb_name:
|
| 51 |
+
wandb_log_model:
|
| 52 |
+
|
| 53 |
+
gradient_accumulation_steps: 1
|
| 54 |
+
micro_batch_size: 1
|
| 55 |
+
num_epochs: 1
|
| 56 |
+
optimizer: adamw_bnb_8bit
|
| 57 |
+
lr_scheduler: cosine
|
| 58 |
+
learning_rate: 0.0002
|
| 59 |
+
|
| 60 |
+
train_on_inputs: false
|
| 61 |
+
group_by_length: false
|
| 62 |
+
bf16: auto
|
| 63 |
+
fp16:
|
| 64 |
+
tf32: false
|
| 65 |
+
|
| 66 |
+
gradient_checkpointing: true
|
| 67 |
+
early_stopping_patience:
|
| 68 |
+
resume_from_checkpoint:
|
| 69 |
+
local_rank:
|
| 70 |
+
logging_steps: 1
|
| 71 |
+
xformers_attention:
|
| 72 |
+
flash_attention: true
|
| 73 |
+
flash_attn_cross_entropy: false
|
| 74 |
+
flash_attn_rms_norm: true
|
| 75 |
+
flash_attn_fuse_qkv: false
|
| 76 |
+
flash_attn_fuse_mlp: true
|
| 77 |
+
|
| 78 |
+
warmup_steps: 100
|
| 79 |
+
evals_per_epoch: 4
|
| 80 |
+
eval_table_size:
|
| 81 |
+
eval_sample_packing: False
|
| 82 |
+
saves_per_epoch: 1
|
| 83 |
+
debug:
|
| 84 |
+
deepspeed: deepspeed_configs/zero2.json
|
| 85 |
+
weight_decay: 0.1
|
| 86 |
+
fsdp:
|
| 87 |
+
fsdp_config:
|
| 88 |
+
special_tokens:
|
| 89 |
+
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
</details><br>
|
| 93 |
+
|
| 94 |
+
# Mistral_FFT
|
| 95 |
+
|
| 96 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
| 97 |
+
It achieves the following results on the evaluation set:
|
| 98 |
+
- Loss: 1.2369
|
| 99 |
+
|
| 100 |
+
## Model description
|
| 101 |
+
|
| 102 |
+
More information needed
|
| 103 |
+
|
| 104 |
+
## Intended uses & limitations
|
| 105 |
+
|
| 106 |
+
More information needed
|
| 107 |
+
|
| 108 |
+
## Training and evaluation data
|
| 109 |
+
|
| 110 |
+
More information needed
|
| 111 |
+
|
| 112 |
+
## Training procedure
|
| 113 |
+
|
| 114 |
+
### Training hyperparameters
|
| 115 |
+
|
| 116 |
+
The following hyperparameters were used during training:
|
| 117 |
+
- learning_rate: 0.0002
|
| 118 |
+
- train_batch_size: 1
|
| 119 |
+
- eval_batch_size: 1
|
| 120 |
+
- seed: 42
|
| 121 |
+
- distributed_type: multi-GPU
|
| 122 |
+
- num_devices: 3
|
| 123 |
+
- total_train_batch_size: 3
|
| 124 |
+
- total_eval_batch_size: 3
|
| 125 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 126 |
+
- lr_scheduler_type: cosine
|
| 127 |
+
- lr_scheduler_warmup_steps: 100
|
| 128 |
+
- num_epochs: 1
|
| 129 |
+
|
| 130 |
+
### Training results
|
| 131 |
+
|
| 132 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 133 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
| 134 |
+
| 0.9016 | 0.03 | 1 | 1.1080 |
|
| 135 |
+
| 0.8288 | 0.25 | 8 | 0.8722 |
|
| 136 |
+
| 1.0797 | 0.5 | 16 | 0.9858 |
|
| 137 |
+
| 1.036 | 0.75 | 24 | 1.1281 |
|
| 138 |
+
| 1.4318 | 1.0 | 32 | 1.2369 |
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
### Framework versions
|
| 142 |
+
|
| 143 |
+
- Transformers 4.38.0.dev0
|
| 144 |
+
- Pytorch 2.1.2+cu118
|
| 145 |
+
- Datasets 2.17.0
|
| 146 |
+
- Tokenizers 0.15.0
|
checkpoint-32/config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MistralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"rms_norm_eps": 1e-05,
|
| 19 |
+
"rope_theta": 10000.0,
|
| 20 |
+
"sliding_window": 4096,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.38.0.dev0",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"vocab_size": 32000
|
| 26 |
+
}
|
checkpoint-32/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"transformers_version": "4.38.0.dev0"
|
| 7 |
+
}
|
checkpoint-32/global_step32/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7eb38726deb23eecd3dcbf80caa10f7f015923f8a41e5e79f6d150aceff59547
|
| 3 |
+
size 28966939260
|
checkpoint-32/global_step32/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62ea71e32c4983ca5b62494c734e61382e3bb326b2f24a55603e9a05b482aad0
|
| 3 |
+
size 28966939580
|
checkpoint-32/global_step32/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:010c0e43e9710bd6c760ac0fdb83f1396e6ce9e092c1334b24bf3093da6fc267
|
| 3 |
+
size 28966939260
|
checkpoint-32/global_step32/mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1380b24977dc07165df6237a0b95efd7b1e53498c14579c3421f02cff31544be
|
| 3 |
+
size 14483552160
|
checkpoint-32/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step32
|
checkpoint-32/model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a8503c1deda58e68d140b03311f032f55e85482182b1b622405a3ed9dc2f8b4a
|
| 3 |
+
size 4943162336
|
checkpoint-32/model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:11dc67d57706fdaff1f691f93e76103097adb30f9bd93bb68f83bebb352d5ded
|
| 3 |
+
size 4999819336
|
checkpoint-32/model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:39af2cfdd3aaebf33bacfb21a5157a5011603c8d95a7d3f3a96c2c30b9cd1dae
|
| 3 |
+
size 4540516344
|
checkpoint-32/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14483464192
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
checkpoint-32/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:47e103ce00460cbd20270c5be09bcfdb3e964a0106d029dc7a8fe52d5a10986b
|
| 3 |
+
size 14768
|
checkpoint-32/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:995bed9510acb7414908366e19db17e7539838b19af296de86e02606a6dc7b9d
|
| 3 |
+
size 14768
|
checkpoint-32/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:baa7193ee61fc28ad1d25e8923c8d9a7498311615be26300bb5386038390e88c
|
| 3 |
+
size 14768
|
checkpoint-32/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d7f3b540cbd40630096328de405c3ab394bd85469ae1807e54046853448e9097
|
| 3 |
+
size 1064
|
checkpoint-32/trainer_state.json
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 8,
|
| 6 |
+
"global_step": 32,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.03,
|
| 13 |
+
"learning_rate": 2.0000000000000003e-06,
|
| 14 |
+
"loss": 0.9016,
|
| 15 |
+
"step": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.03,
|
| 19 |
+
"eval_loss": 1.1080207824707031,
|
| 20 |
+
"eval_runtime": 11.5977,
|
| 21 |
+
"eval_samples_per_second": 8.622,
|
| 22 |
+
"eval_steps_per_second": 2.932,
|
| 23 |
+
"step": 1
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.06,
|
| 27 |
+
"learning_rate": 4.000000000000001e-06,
|
| 28 |
+
"loss": 1.0535,
|
| 29 |
+
"step": 2
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"epoch": 0.09,
|
| 33 |
+
"learning_rate": 6e-06,
|
| 34 |
+
"loss": 0.9383,
|
| 35 |
+
"step": 3
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"epoch": 0.12,
|
| 39 |
+
"learning_rate": 8.000000000000001e-06,
|
| 40 |
+
"loss": 0.9804,
|
| 41 |
+
"step": 4
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"epoch": 0.16,
|
| 45 |
+
"learning_rate": 1e-05,
|
| 46 |
+
"loss": 0.933,
|
| 47 |
+
"step": 5
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"epoch": 0.19,
|
| 51 |
+
"learning_rate": 1.2e-05,
|
| 52 |
+
"loss": 0.8544,
|
| 53 |
+
"step": 6
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"epoch": 0.22,
|
| 57 |
+
"learning_rate": 1.4000000000000001e-05,
|
| 58 |
+
"loss": 0.8906,
|
| 59 |
+
"step": 7
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.25,
|
| 63 |
+
"learning_rate": 1.6000000000000003e-05,
|
| 64 |
+
"loss": 0.8288,
|
| 65 |
+
"step": 8
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.25,
|
| 69 |
+
"eval_loss": 0.8721821904182434,
|
| 70 |
+
"eval_runtime": 11.6468,
|
| 71 |
+
"eval_samples_per_second": 8.586,
|
| 72 |
+
"eval_steps_per_second": 2.919,
|
| 73 |
+
"step": 8
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.28,
|
| 77 |
+
"learning_rate": 1.8e-05,
|
| 78 |
+
"loss": 0.9369,
|
| 79 |
+
"step": 9
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.31,
|
| 83 |
+
"learning_rate": 2e-05,
|
| 84 |
+
"loss": 0.8713,
|
| 85 |
+
"step": 10
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"epoch": 0.34,
|
| 89 |
+
"learning_rate": 2.2000000000000003e-05,
|
| 90 |
+
"loss": 0.9194,
|
| 91 |
+
"step": 11
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"epoch": 0.38,
|
| 95 |
+
"learning_rate": 2.4e-05,
|
| 96 |
+
"loss": 0.9693,
|
| 97 |
+
"step": 12
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"epoch": 0.41,
|
| 101 |
+
"learning_rate": 2.6000000000000002e-05,
|
| 102 |
+
"loss": 0.9782,
|
| 103 |
+
"step": 13
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"epoch": 0.44,
|
| 107 |
+
"learning_rate": 2.8000000000000003e-05,
|
| 108 |
+
"loss": 1.108,
|
| 109 |
+
"step": 14
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"epoch": 0.47,
|
| 113 |
+
"learning_rate": 3e-05,
|
| 114 |
+
"loss": 1.0411,
|
| 115 |
+
"step": 15
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"epoch": 0.5,
|
| 119 |
+
"learning_rate": 3.2000000000000005e-05,
|
| 120 |
+
"loss": 1.0797,
|
| 121 |
+
"step": 16
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.5,
|
| 125 |
+
"eval_loss": 0.9858229160308838,
|
| 126 |
+
"eval_runtime": 11.6476,
|
| 127 |
+
"eval_samples_per_second": 8.585,
|
| 128 |
+
"eval_steps_per_second": 2.919,
|
| 129 |
+
"step": 16
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.53,
|
| 133 |
+
"learning_rate": 3.4000000000000007e-05,
|
| 134 |
+
"loss": 1.0883,
|
| 135 |
+
"step": 17
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.56,
|
| 139 |
+
"learning_rate": 3.6e-05,
|
| 140 |
+
"loss": 1.1135,
|
| 141 |
+
"step": 18
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.59,
|
| 145 |
+
"learning_rate": 3.8e-05,
|
| 146 |
+
"loss": 1.1446,
|
| 147 |
+
"step": 19
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.62,
|
| 151 |
+
"learning_rate": 4e-05,
|
| 152 |
+
"loss": 1.1355,
|
| 153 |
+
"step": 20
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.66,
|
| 157 |
+
"learning_rate": 4.2e-05,
|
| 158 |
+
"loss": 1.1383,
|
| 159 |
+
"step": 21
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.69,
|
| 163 |
+
"learning_rate": 4.4000000000000006e-05,
|
| 164 |
+
"loss": 1.1454,
|
| 165 |
+
"step": 22
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.72,
|
| 169 |
+
"learning_rate": 4.600000000000001e-05,
|
| 170 |
+
"loss": 1.1797,
|
| 171 |
+
"step": 23
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.75,
|
| 175 |
+
"learning_rate": 4.8e-05,
|
| 176 |
+
"loss": 1.036,
|
| 177 |
+
"step": 24
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.75,
|
| 181 |
+
"eval_loss": 1.128091812133789,
|
| 182 |
+
"eval_runtime": 11.6435,
|
| 183 |
+
"eval_samples_per_second": 8.588,
|
| 184 |
+
"eval_steps_per_second": 2.92,
|
| 185 |
+
"step": 24
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"epoch": 0.78,
|
| 189 |
+
"learning_rate": 5e-05,
|
| 190 |
+
"loss": 1.146,
|
| 191 |
+
"step": 25
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.81,
|
| 195 |
+
"learning_rate": 5.2000000000000004e-05,
|
| 196 |
+
"loss": 1.2633,
|
| 197 |
+
"step": 26
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"epoch": 0.84,
|
| 201 |
+
"learning_rate": 5.4000000000000005e-05,
|
| 202 |
+
"loss": 1.1635,
|
| 203 |
+
"step": 27
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"epoch": 0.88,
|
| 207 |
+
"learning_rate": 5.6000000000000006e-05,
|
| 208 |
+
"loss": 1.1703,
|
| 209 |
+
"step": 28
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 0.91,
|
| 213 |
+
"learning_rate": 5.8e-05,
|
| 214 |
+
"loss": 1.3711,
|
| 215 |
+
"step": 29
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"epoch": 0.94,
|
| 219 |
+
"learning_rate": 6e-05,
|
| 220 |
+
"loss": 1.2206,
|
| 221 |
+
"step": 30
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"epoch": 0.97,
|
| 225 |
+
"learning_rate": 6.2e-05,
|
| 226 |
+
"loss": 1.3504,
|
| 227 |
+
"step": 31
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"epoch": 1.0,
|
| 231 |
+
"learning_rate": 6.400000000000001e-05,
|
| 232 |
+
"loss": 1.4318,
|
| 233 |
+
"step": 32
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 1.0,
|
| 237 |
+
"eval_loss": 1.2369011640548706,
|
| 238 |
+
"eval_runtime": 11.6666,
|
| 239 |
+
"eval_samples_per_second": 8.571,
|
| 240 |
+
"eval_steps_per_second": 2.914,
|
| 241 |
+
"step": 32
|
| 242 |
+
}
|
| 243 |
+
],
|
| 244 |
+
"logging_steps": 1,
|
| 245 |
+
"max_steps": 32,
|
| 246 |
+
"num_input_tokens_seen": 0,
|
| 247 |
+
"num_train_epochs": 1,
|
| 248 |
+
"save_steps": 500,
|
| 249 |
+
"total_flos": 1.6776151921852416e+16,
|
| 250 |
+
"train_batch_size": 1,
|
| 251 |
+
"trial_name": null,
|
| 252 |
+
"trial_params": null
|
| 253 |
+
}
|
checkpoint-32/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24bbe8f1f822ed0391328723b32a0a2fa58363ce34e24113b55b200c89fcde30
|
| 3 |
+
size 6584
|
checkpoint-32/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MistralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"rms_norm_eps": 1e-05,
|
| 19 |
+
"rope_theta": 10000.0,
|
| 20 |
+
"sliding_window": 4096,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.38.0.dev0",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"vocab_size": 32000
|
| 26 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"transformers_version": "4.38.0.dev0"
|
| 7 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10d738bba9a1c5501a99d39647a0c98ff2af4ba1baadaa8d20f731b1050d202c
|
| 3 |
+
size 14483504814
|
runs/Feb15_04-17-13_734ab4bb3394/events.out.tfevents.1707970687.734ab4bb3394.5067.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43f2b52c2f5f3ec20d7ae8222cbcc1f5fb9018d39981dd5a251ccbd206e6c166
|
| 3 |
+
size 11687
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
| 3 |
+
size 493443
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"additional_special_tokens": [],
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": true,
|
| 35 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 36 |
+
"pad_token": "</s>",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 40 |
+
"trust_remote_code": false,
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false,
|
| 43 |
+
"use_fast": true
|
| 44 |
+
}
|