jplhughes2 commited on
Commit
6ac1e74
·
verified ·
1 Parent(s): 394739e

Model save

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: meta-llama/Llama-3.1-405B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - jplhughes2/docs_only_30k_filtered
10
+ model-index:
11
+ - name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ # This works!
24
+
25
+ base_model: meta-llama/Llama-3.1-405B-Instruct
26
+ hub_model_id: jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
27
+ load_in_8bit: false
28
+ load_in_4bit: true
29
+ adapter: qlora
30
+ wandb_name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
31
+ output_dir: ./outputs/out/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
32
+ # base_model:
33
+ # hub_model_id:
34
+ # load_in_8bit:
35
+ # load_in_4bit:
36
+ # adapter:
37
+ # wandb_name:
38
+ # output_dir:
39
+
40
+ tokenizer_type: AutoTokenizer
41
+ push_dataset_to_hub:
42
+ strict: false
43
+
44
+ datasets:
45
+ - path: jplhughes2/docs_only_30k_filtered
46
+ type: completion
47
+ field: text
48
+ split: train
49
+ dataset_prepared_path: last_run_prepared
50
+ # val_set_size: 0.05
51
+ test_datasets:
52
+ - path: jplhughes2/docs_only_val_5k_filtered
53
+ type: completion
54
+ field: text
55
+ split: train
56
+ save_safetensors: true
57
+
58
+ sequence_len: 1024
59
+ sample_packing: true
60
+ pad_to_sequence_len: true
61
+
62
+ lora_r: 64
63
+ lora_alpha: 128
64
+ lora_dropout: 0.05
65
+ lora_target_modules:
66
+ lora_target_linear: true
67
+
68
+ wandb_mode:
69
+ wandb_project: alignment-faking
70
+ wandb_entity: academicsnyuperez
71
+ wandb_watch:
72
+ wandb_run_id:
73
+ wandb_log_model:
74
+
75
+ gradient_accumulation_steps: 1
76
+ micro_batch_size: 4
77
+ num_epochs: 1
78
+ optimizer: adamw_torch_fused
79
+ lr_scheduler: cosine
80
+ learning_rate: 0.00001
81
+
82
+ train_on_inputs: false
83
+ group_by_length: false
84
+ bf16: true
85
+ tf32: true
86
+
87
+ gradient_checkpointing: true
88
+ gradient_checkpointing_kwargs:
89
+ use_reentrant: true
90
+ logging_steps: 1
91
+ flash_attention: true
92
+
93
+ warmup_steps: 10
94
+ evals_per_epoch: 3
95
+ saves_per_epoch: 1
96
+ weight_decay: 0.01
97
+ fsdp:
98
+ - full_shard
99
+ - auto_wrap
100
+ fsdp_config:
101
+ fsdp_limit_all_gathers: true
102
+ fsdp_sync_module_states: true
103
+ fsdp_offload_params: false
104
+ fsdp_use_orig_params: false
105
+ fsdp_cpu_ram_efficient_loading: true
106
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
107
+ fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
108
+ fsdp_state_dict_type: FULL_STATE_DICT
109
+ fsdp_sharding_strategy: FULL_SHARD
110
+ special_tokens:
111
+ pad_token: <|finetune_right_pad_id|>
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
118
+
119
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-405B-Instruct) on the jplhughes2/docs_only_30k_filtered dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 0.6041
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 1e-05
141
+ - train_batch_size: 4
142
+ - eval_batch_size: 4
143
+ - seed: 42
144
+ - distributed_type: multi-GPU
145
+ - num_devices: 8
146
+ - total_train_batch_size: 32
147
+ - total_eval_batch_size: 32
148
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
149
+ - lr_scheduler_type: cosine
150
+ - lr_scheduler_warmup_steps: 10
151
+ - num_epochs: 1.0
152
+
153
+ ### Training results
154
+
155
+ | Training Loss | Epoch | Step | Validation Loss |
156
+ |:-------------:|:------:|:----:|:---------------:|
157
+ | 1.323 | 0.0016 | 1 | 1.3262 |
158
+ | 0.648 | 0.3344 | 204 | 0.6514 |
159
+ | 0.6137 | 0.6689 | 408 | 0.6041 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.14.0
165
+ - Transformers 4.48.3
166
+ - Pytorch 2.4.1+cu124
167
+ - Datasets 3.2.0
168
+ - Tokenizers 0.21.0