Update README.md
Browse files
README.md
CHANGED
|
@@ -15,4 +15,36 @@ tags:
|
|
| 15 |
- llama
|
| 16 |
- llama-3
|
| 17 |
- pytorch
|
| 18 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
- llama
|
| 16 |
- llama-3
|
| 17 |
- pytorch
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
Model is quantized to FP8 using llm_compressor.
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 24 |
+
from llmcompressor.transformers import oneshot
|
| 25 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
| 26 |
+
|
| 27 |
+
# Define the model ID for the model you want to quantize
|
| 28 |
+
MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct"
|
| 29 |
+
|
| 30 |
+
# Load the model and tokenizer
|
| 31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
MODEL_ID, device_map="auto", torch_dtype="auto"
|
| 33 |
+
)
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 35 |
+
|
| 36 |
+
# Configure the quantization recipe
|
| 37 |
+
recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
|
| 38 |
+
|
| 39 |
+
# Apply the quantization algorithm
|
| 40 |
+
oneshot(model=model, recipe=recipe)
|
| 41 |
+
|
| 42 |
+
# Define the directory to save the quantized model
|
| 43 |
+
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
|
| 44 |
+
|
| 45 |
+
# Save the quantized model and tokenizer
|
| 46 |
+
model.save_pretrained(SAVE_DIR)
|
| 47 |
+
tokenizer.save_pretrained(SAVE_DIR)
|
| 48 |
+
|
| 49 |
+
print(f"Quantized model saved to (SAVE_DIR)")
|
| 50 |
+
```
|