Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- computer-vision
|
5 |
+
- microscopy
|
6 |
+
- materials-science
|
7 |
+
- encoder
|
8 |
+
- segmentation
|
9 |
+
- pytorch
|
10 |
+
- pretrained
|
11 |
+
library_name: pretrained-microscopy-models
|
12 |
+
---
|
13 |
+
|
14 |
+
# Pretrained Microscopy Encoder - dpn98 (micronet)
|
15 |
+
|
16 |
+
This is a `dpn98` encoder pretrained on `micronet` microscopy datasets, prepared for use with [segmentation_models.pytorch](https://github.com/qubvel-org/segmentation_models.pytorch).
|
17 |
+
|
18 |
+
Models originally pretrained for [pretrained-microscopy-models](https://github.com/nasa/pretrained-microscopy-models)
|
19 |
+
|
20 |
+
## Model Details
|
21 |
+
|
22 |
+
- **Architecture**: dpn98
|
23 |
+
- **Pretrained on**: micronet
|
24 |
+
- **Input shape**: RGB images
|
25 |
+
- **Framework**: PyTorch
|
26 |
+
- **Use case**: Feature extraction, segmentation backbone
|
27 |
+
|
28 |
+
## Files
|
29 |
+
|
30 |
+
- `encoder_weights.pth` - PyTorch `state_dict()` of the encoder
|
31 |
+
- `README.md` - This model card
|
32 |
+
- `encoder.py` - Sample code to use the encoder within UNet.
|
33 |
+
|
34 |
+
## License
|
35 |
+
|
36 |
+
mit
|