from segmentation_models_pytorch.encoders import encoders from segmentation_models_pytorch import Unet import torch # Override pretrained settings for your weights encoders["dpn98"]["pretrained_settings"]["micronet"] = { "url": "https://huggingface.co/jstuckner/microscopy-dpn98-micronet/resolve/main/dpn98_micronet_weights.pth", "input_space": "RGB", "input_range": [0, 1], "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], } # Use as normal model = Unet( encoder_name="dpn98", encoder_weights="micronet", classes=1, activation=None, ) # Test input x = torch.randn(1, 3, 256, 256) with torch.no_grad(): y = model(x) print("Output shape:", y.shape)