File size: 4,491 Bytes
d4f00fa
 
 
 
 
920bb9a
 
 
d4f00fa
 
 
 
 
920bb9a
 
 
 
d4f00fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
920bb9a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
base_model: Locutusque/TinyMistral-248M
tags:
- generated_from_trainer
- DPO
- lora
- tinymistral
metrics:
- accuracy
model-index:
- name: tinymistral-248-DPO
  results: []
language:
- en
library_name: transformers
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinymistral-248-DPO

This model is a fine-tuned version of [Locutusque/TinyMistral-248M](https://huggingface.co/Locutusque/TinyMistral-248M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3205
- Accuracy: 0.0
- Rewards/chosen: 0.7722
- Rewards/rejected: -0.2727
- Rewards/accuracies: 1.0
- Rewards/margins: 1.0449
- Logps/rejected: -286.5494
- Logps/chosen: -398.5646
- Logits/rejected: -2.3562
- Logits/chosen: -1.8620

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 12
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 144
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5815        | 0.48  | 10   | 0.3205          | 0.0      | 0.7722         | -0.2727          | 1.0                | 1.0449          | -286.5494      | -398.5646    | -2.3562         | -1.8620       |
| 0.3287        | 0.95  | 20   | 0.0970          | 0.0      | 1.0191         | -1.8694          | 1.0                | 2.8886          | -302.5168      | -396.0956    | -2.0547         | -1.5790       |
| 0.2126        | 1.43  | 30   | 0.0414          | 0.0      | 0.3685         | -4.5314          | 1.0                | 4.8999          | -329.1370      | -402.6024    | -1.8100         | -1.4099       |
| 0.1844        | 1.9   | 40   | 0.0260          | 0.0      | 0.9879         | -4.8275          | 1.0                | 5.8153          | -332.0973      | -396.4084    | -1.8704         | -1.4976       |
| 0.1546        | 2.38  | 50   | 0.0190          | 0.0      | 1.1813         | -5.2560          | 1.0                | 6.4373          | -336.3821      | -394.4740    | -1.9098         | -1.5582       |
| 0.1532        | 2.86  | 60   | 0.0140          | 0.0      | 1.0583         | -6.0198          | 1.0                | 7.0780          | -344.0201      | -395.7045    | -1.8920         | -1.5654       |
| 0.1402        | 3.33  | 70   | 0.0112          | 0.0      | 1.0134         | -6.5382          | 1.0                | 7.5517          | -349.2049      | -396.1526    | -1.8823         | -1.5706       |
| 0.1544        | 3.81  | 80   | 0.0089          | 0.0      | 0.8836         | -7.1726          | 1.0                | 8.0562          | -355.5490      | -397.4513    | -1.8518         | -1.5535       |
| 0.1357        | 4.29  | 90   | 0.0072          | 0.0      | 0.7532         | -7.7663          | 1.0                | 8.5195          | -361.4852      | -398.7546    | -1.8193         | -1.5345       |
| 0.1418        | 4.76  | 100  | 0.0061          | 0.0      | 0.6041         | -8.3133          | 1.0                | 8.9174          | -366.9556      | -400.2459    | -1.7889         | -1.5150       |
| 0.1482        | 5.24  | 110  | 0.0051          | 0.0      | 0.4867         | -8.7961          | 1.0                | 9.2828          | -371.7837      | -401.4203    | -1.7611         | -1.4971       |
| 0.141         | 5.71  | 120  | 0.0045          | 0.0      | 0.4212         | -9.1494          | 1.0                | 9.5706          | -375.3166      | -402.0751    | -1.7409         | -1.4842       |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0