Update README.md
Browse filesComparativa modelos medium, samll and nano
README.md
CHANGED
@@ -16,339 +16,165 @@ pipeline_tag: video-classification
|
|
16 |
[](https://github.com/ultralytics/ultralytics)
|
17 |
[](https://huggingface.co)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
- [📊 Model Performance](#-model-performance)
|
22 |
-
- [⚡ Training Efficiency](#-training-efficiency)
|
23 |
-
- [🖼️ Visual Results](#️-visual-results)
|
24 |
-
- [💰 Resource Usage](#-resource-usage)
|
25 |
-
- [🚀 Usage](#-usage)
|
26 |
-
- [📈 Detailed Metrics](#-detailed-metrics)
|
27 |
-
- [🔗 Downloads](#-downloads)
|
28 |
|
29 |
---
|
30 |
|
31 |
-
##
|
32 |
|
33 |
-
|
34 |
-
|--------|-------------------|-------------------|-------------|
|
35 |
-
| **🏆 [email protected]** | **97.94%** | **97.04%** | 🥇 Medium (+0.9%) |
|
36 |
-
| **📐 Precision** | **97.27%** | **97.22%** | 🥇 Medium (+0.05%) |
|
37 |
-
| **🔍 Recall** | **95.74%** | **93.09%** | 🥇 Medium (+2.65%) |
|
38 |
-
| **⏱️ Training Time** | 11.55 hours | **4.43 hours** | 🥇 **Small (2.6x faster)** |
|
39 |
-
| **💾 Model Size** | ~50 MB | **~25 MB** | 🥇 **Small (50% lighter)** |
|
40 |
-
| **🚀 Inference Speed** | ~15ms | **~8-12ms** | 🥇 **Small (25-50% faster)** |
|
41 |
-
| **💰 Training Cost** | $57.75 | **$22.15** | 🥇 **Small (62% cheaper)** |
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
---
|
49 |
|
50 |
-
##
|
51 |
|
52 |
-
###
|
53 |
|
54 |
-
|
|
55 |
-
|
56 |
-
| **[email protected]** |
|
57 |
-
| **[email protected]
|
58 |
-
| **
|
59 |
-
| **Recall** |
|
60 |
-
| **F1-Score** |
|
61 |
-
|
62 |
-
### 📈 Performance Evolution
|
63 |
-
|
64 |
-
**Training Progress Comparison:**
|
65 |
-
```
|
66 |
-
Medium Model Evolution:
|
67 |
-
Epoch 1: 60.63% → Epoch 100: 97.94% [email protected] (+37.31%)
|
68 |
-
|
69 |
-
Small Model Evolution:
|
70 |
-
Epoch 1: 57.58% → Epoch 100: 97.04% [email protected] (+39.46%)
|
71 |
-
```
|
72 |
-
|
73 |
-
**Key Insights:**
|
74 |
-
- ✅ Both models achieve **>97% [email protected]** (excellent performance)
|
75 |
-
- ✅ Small model shows **slightly better learning curve** (+39.46% vs +37.31%)
|
76 |
-
- ✅ Performance difference is **<1%** - practically negligible
|
77 |
-
- ✅ Both models ready for **production deployment**
|
78 |
|
79 |
---
|
80 |
|
81 |
-
##
|
82 |
|
83 |
-
###
|
84 |
-
| Phase | Medium | Small | Improvement |
|
85 |
-
|-------|---------|-------|-------------|
|
86 |
-
| **Total Training** | 41,586s (11.55h) | 15,966s (4.43h) | **🚀 2.6x faster** |
|
87 |
-
| **Per Epoch** | ~415s (6.9min) | ~160s (2.7min) | **⚡ 2.6x faster** |
|
88 |
-
| **Convergence** | Epoch 80+ | Epoch 60+ | **📈 20% earlier** |
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|----------|---------|-------|----------|
|
93 |
-
| **Model Parameters** | ~25.9M | ~11.2M | Small: 57% less |
|
94 |
-
| **VRAM Usage** | ~8GB | ~4-6GB | Small: 25-50% less |
|
95 |
-
| **Storage** | ~50MB | ~25MB | Small: 50% smaller |
|
96 |
-
| **Inference Memory** | ~200MB | ~100MB | Small: 50% less |
|
97 |
-
|
98 |
-
---
|
99 |
|
100 |
-
|
|
|
|
|
101 |
|
102 |
-
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
| **97.94% [email protected]** | **97.04% [email protected]** |
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
| Medium Model | Small Model |
|
112 |
-
|:------------:|:-----------:|
|
113 |
-
|  |  |
|
114 |
-
| **97.27% Precision** | **97.22% Precision** |
|
115 |
-
|
116 |
-
### 📈 Precision-Recall Curves
|
117 |
-
|
118 |
-
| Medium Model PR Curve | Small Model PR Curve |
|
119 |
-
|:---------------------:|:--------------------:|
|
120 |
-
|  |  |
|
121 |
-
|
122 |
-
### 🔍 F1-Score Curves
|
123 |
-
|
124 |
-
| Medium F1 Curve | Small F1 Curve |
|
125 |
-
|:---------------:|:---------------:|
|
126 |
-
|  |  |
|
127 |
|
128 |
-
### 📊
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|  |  |
|
133 |
|
134 |
-
|
|
|
|
|
135 |
|
136 |
-
####
|
137 |
-
|
138 |
-
|:------------:|:-----------:|
|
139 |
-
|  |  |
|
140 |
-
|  |  |
|
141 |
|
142 |
-
####
|
143 |
-
|
144 |
-
|
145 |
-
|  |  |
|
146 |
|
147 |
---
|
148 |
|
149 |
-
|
150 |
|
151 |
-
|
|
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
| **Electricity** | ~$4.62 | ~$1.77 | **-62%** |
|
157 |
-
| **Cloud Compute** | ~$57.75 | ~$22.15 | **-62%** |
|
158 |
-
| **Storage** | $0.50/month | $0.25/month | **-50%** |
|
159 |
-
| **Bandwidth** | $1.00 | $0.50 | **-50%** |
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
- **Energy Efficiency**: Small model = **2.6x more efficient**
|
164 |
-
- **Sustainability Score**: Small model **⭐⭐⭐⭐⭐** vs Medium **⭐⭐⭐**
|
165 |
|
166 |
-
|
|
|
|
|
167 |
|
168 |
-
|
169 |
|
170 |
-
|
171 |
-
```bash
|
172 |
-
pip install ultralytics torch torchvision
|
173 |
-
```
|
174 |
|
175 |
-
### 📥 Model Download
|
176 |
```python
|
177 |
from ultralytics import YOLO
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
### 📊 Benchmarking
|
196 |
-
```python
|
197 |
-
import time
|
198 |
-
|
199 |
-
# Speed test
|
200 |
-
start = time.time()
|
201 |
-
results = small_model('test_image.jpg')
|
202 |
-
small_inference_time = time.time() - start
|
203 |
-
|
204 |
-
start = time.time()
|
205 |
-
results = medium_model('test_image.jpg')
|
206 |
-
medium_inference_time = time.time() - start
|
207 |
-
|
208 |
-
print(f"Small: {small_inference_time:.3f}s")
|
209 |
-
print(f"Medium: {medium_inference_time:.3f}s")
|
210 |
-
print(f"Speedup: {medium_inference_time/small_inference_time:.1f}x")
|
211 |
```
|
212 |
|
213 |
---
|
214 |
|
215 |
-
##
|
216 |
-
|
217 |
-
### 📊 Per-Class Performance (Estimated)
|
218 |
-
|
219 |
-
| Class | Medium Precision | Small Precision | Medium Recall | Small Recall |
|
220 |
-
|-------|------------------|-----------------|---------------|--------------|
|
221 |
-
| **Adidas** | ~97.5% | ~97.0% | ~96.0% | ~94.0% |
|
222 |
-
| **Adidas_1** | ~97.0% | ~96.8% | ~95.5% | ~92.0% |
|
223 |
-
| **Adidas_2** | ~97.2% | ~97.0% | ~95.8% | ~93.0% |
|
224 |
-
| **Nike** | ~98.0% | ~97.8% | ~96.0% | ~95.0% |
|
225 |
-
|
226 |
-
### 🔄 Convergence Analysis
|
227 |
-
|
228 |
-
**Medium Model Convergence:**
|
229 |
-
- Epoch 20: 90.68% [email protected]
|
230 |
-
- Epoch 60: 96.09% [email protected]
|
231 |
-
- Epoch 100: **97.94% [email protected]**
|
232 |
-
|
233 |
-
**Small Model Convergence:**
|
234 |
-
- Epoch 20: 88.30% [email protected]
|
235 |
-
- Epoch 60: 95.29% [email protected]
|
236 |
-
- Epoch 100: **97.04% [email protected]**
|
237 |
-
|
238 |
-
### 📉 Loss Evolution
|
239 |
-
|
240 |
-
| Loss Type | Medium Final | Small Final | Better |
|
241 |
-
|-----------|--------------|-------------|---------|
|
242 |
-
| **Box Loss** | 0.7554 | 0.7707 | Medium |
|
243 |
-
| **Class Loss** | 0.3743 | 0.4121 | Medium |
|
244 |
-
| **DFL Loss** | 1.0088 | 0.9651 | Small |
|
245 |
-
|
246 |
-
---
|
247 |
-
|
248 |
-
## 🔗 Downloads
|
249 |
|
250 |
-
###
|
251 |
-
- **
|
252 |
-
- **
|
|
|
|
|
253 |
|
254 |
-
###
|
255 |
-
- **
|
256 |
-
- **
|
257 |
-
- **
|
258 |
-
|
259 |
-
|
260 |
-
- **
|
261 |
-
- **Format**: YOLO format with train/val/test splits
|
262 |
-
- **Images**: 416×416px resolution optimized
|
263 |
|
264 |
---
|
265 |
|
266 |
-
## 🎯
|
267 |
-
|
268 |
-
### ✅ Choose **Medium Model** when:
|
269 |
-
- **Precision is critical** (forensics, legal applications)
|
270 |
-
- **Maximum accuracy needed** (>97.5% required)
|
271 |
-
- **Resources are abundant** (cloud/server deployment)
|
272 |
-
- **Batch processing** with time flexibility
|
273 |
|
274 |
-
###
|
275 |
-
-
|
276 |
-
-
|
277 |
-
-
|
278 |
-
-
|
279 |
-
-
|
280 |
|
281 |
-
###
|
282 |
-
-
|
283 |
-
-
|
284 |
-
-
|
285 |
-
-
|
286 |
-
|
287 |
-
---
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
| **Parameters** | 25.9M | 11.2M |
|
296 |
-
| **Layers** | 295 | 225 |
|
297 |
-
| **GFLOPs** | 78.9 | 28.6 |
|
298 |
-
| **Input Size** | 416×416 | 416×416 |
|
299 |
-
|
300 |
-
### ⚙️ Training Configuration
|
301 |
-
Both models trained with:
|
302 |
-
- **Epochs**: 100
|
303 |
-
- **Batch Size**: 4
|
304 |
-
- **Optimizer**: AdamW
|
305 |
-
- **Learning Rate**: 0.001 → 0.01
|
306 |
-
- **Augmentations**: RandAugment, HSV, Mosaic, Erasing
|
307 |
-
- **Device**: NVIDIA GPU with CUDA
|
308 |
|
309 |
---
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
```bibtex
|
316 |
-
@misc{sports-logo-yolov8-comparison,
|
317 |
-
title={YOLOv8 Sports Logo Detection: Medium vs Small Model Comparison},
|
318 |
-
author={Juan Carlos Macías - Grupo 5},
|
319 |
-
year={2025},
|
320 |
-
publisher={Hugging Face},
|
321 |
-
url={https://huggingface.co/your-username/your-model}
|
322 |
-
}
|
323 |
-
```
|
324 |
-
|
325 |
-
---
|
326 |
-
|
327 |
-
## 🤝 Contributing
|
328 |
-
|
329 |
-
Contributions are welcome! Please feel free to submit a Pull Request.
|
330 |
-
|
331 |
-
## 📄 License
|
332 |
-
|
333 |
-
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
334 |
-
|
335 |
-
## 🙏 Acknowledgments
|
336 |
-
|
337 |
-
- [Ultralytics](https://ultralytics.com/) for the YOLOv8 framework
|
338 |
-
- Sports brands for logo datasets (educational use)
|
339 |
-
- Hugging Face for model hosting platform
|
340 |
-
|
341 |
-
---
|
342 |
-
|
343 |
-
## 📞 Support
|
344 |
-
|
345 |
-
- 🐛 [Report Issues](https://github.com/your-repo/issues)
|
346 |
-
- 💬 [Discussions](https://github.com/your-repo/discussions)
|
347 |
-
- 📧 [Contact](mailto:[email protected])
|
348 |
-
|
349 |
-
---
|
350 |
|
351 |
-
### 🏆 **Performance Summary: Small Model Delivers 97% of Medium's Accuracy with 2.6x Efficiency Gain**
|
352 |
|
353 |
*Last Updated: September 2, 2025*
|
354 |
|
|
|
16 |
[](https://github.com/ultralytics/ultralytics)
|
17 |
[](https://huggingface.co)
|
18 |
|
19 |
+
# 🚀 Modelos YOLOv8 para Detección de Logos Deportivos - Análisis Comparativo
|
20 |
+
### Detección de Objetos de Alto Rendimiento para Reconocimiento de Marcas Deportivas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
---
|
23 |
|
24 |
+
## 📋 Resumen de Modelos
|
25 |
|
26 |
+
Este repositorio presenta una comparación exhaustiva de tres modelos YOLOv8 entrenados para detección de logos deportivos, específicamente dirigidos al reconocimiento de **Adidas**, **Nike** y **variantes de Adidas**. Cada modelo ofrece diferentes compensaciones entre precisión, velocidad y requerimientos computacionales.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
| Modelo | Arquitectura | Parámetros | Tamaño | Velocidad | Mejor Caso de Uso |
|
29 |
+
|--------|-------------|------------|---------|-----------|-------------------|
|
30 |
+
| **YOLOv8n (Nano)** | Nano | ~3.2M | 6.2 MB | >100 FPS | Móviles/Dispositivos Edge |
|
31 |
+
| **YOLOv8s (Small)** | Small | ~11.2M | 21.5 MB | ~80 FPS | Aplicaciones balanceadas |
|
32 |
+
| **YOLOv8m (Medium)** | Medium | ~25.9M | 49.7 MB | ~60 FPS | Escenarios alta precisión |
|
33 |
|
34 |
---
|
35 |
|
36 |
+
## 🎯 Comparación de Rendimiento
|
37 |
|
38 |
+
### 📊 Resumen de Métricas Clave
|
39 |
|
40 |
+
| Métrica | Nano (YOLOv8n) | Small (YOLOv8s) | Medium (YOLOv8m) | Ganador |
|
41 |
+
|---------|----------------|-----------------|------------------|---------|
|
42 |
+
| **[email protected]** | 95.9% | 97.0% | 97.9% | 🥇 Medium |
|
43 |
+
| **[email protected]-0.95** | 72.4% | 75.2% | 76.4% | 🥇 Medium |
|
44 |
+
| **Precisión** | 98.0% | 97.2% | 97.3% | 🥇 Nano |
|
45 |
+
| **Recall** | 92.7% | 93.1% | 95.7% | 🥇 Medium |
|
46 |
+
| **F1-Score** | 95.3% | 95.1% | 96.5% | 🥇 Medium |
|
47 |
+
| **Tiempo Entrenamiento** | 2.55h | 4.43h | 11.6h | 🥇 Nano |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
---
|
50 |
|
51 |
+
## 🎨 Recursos Visuales
|
52 |
|
53 |
+
### 📊 **Visualizaciones de Rendimiento - Modelo Nano**
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
#### Evolución de Métricas de Entrenamiento
|
56 |
+

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
#### Curvas de Rendimiento
|
59 |
+

|
60 |
+

|
61 |
|
62 |
+
#### Análisis de Confusión - Nano
|
63 |
+

|
64 |
|
65 |
+
#### Ejemplos de Validación - Nano
|
66 |
+

|
67 |
+

|
|
|
68 |
|
69 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
### 📊 **Visualizaciones de Rendimiento - Modelo Small**
|
72 |
|
73 |
+
#### Evolución de Métricas de Entrenamiento
|
74 |
+

|
|
|
75 |
|
76 |
+
#### Curvas de Rendimiento
|
77 |
+

|
78 |
+

|
79 |
|
80 |
+
#### Análisis de Confusión - Small
|
81 |
+

|
|
|
|
|
|
|
82 |
|
83 |
+
#### Ejemplos de Validación - Small
|
84 |
+

|
85 |
+

|
|
|
86 |
|
87 |
---
|
88 |
|
89 |
+
### 📊 **Visualizaciones de Rendimiento - Modelo Medium**
|
90 |
|
91 |
+
#### Evolución de Métricas de Entrenamiento
|
92 |
+

|
93 |
|
94 |
+
#### Curvas de Rendimiento
|
95 |
+

|
96 |
+

|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
#### Análisis de Confusión - Medium
|
99 |
+

|
|
|
|
|
100 |
|
101 |
+
#### Ejemplos de Validación - Medium
|
102 |
+

|
103 |
+

|
104 |
|
105 |
+
---
|
106 |
|
107 |
+
## 🚀 Ejemplo de Uso
|
|
|
|
|
|
|
108 |
|
|
|
109 |
```python
|
110 |
from ultralytics import YOLO
|
111 |
|
112 |
+
# Cargar tu modelo preferido
|
113 |
+
modelo_nano = YOLO('ruta/a/nano/weights/best.pt')
|
114 |
+
modelo_small = YOLO('ruta/a/small/weights/best.pt')
|
115 |
+
modelo_medium = YOLO('ruta/a/medium/weights/best.pt')
|
116 |
+
|
117 |
+
# Ejecutar inferencia
|
118 |
+
resultados = modelo_nano('ruta/a/tu/imagen.jpg')
|
119 |
+
|
120 |
+
# Procesar resultados
|
121 |
+
for r in resultados:
|
122 |
+
cajas = r.boxes
|
123 |
+
for caja in cajas:
|
124 |
+
id_clase = caja.cls
|
125 |
+
confianza = caja.conf
|
126 |
+
coordenadas = caja.xyxy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
```
|
128 |
|
129 |
---
|
130 |
|
131 |
+
## 📊 Información del Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
### 🎯 Clases Detectadas
|
134 |
+
- **adidas**: Variantes principales del logo de Adidas
|
135 |
+
- **nike**: Logos swoosh y de texto de Nike
|
136 |
+
- **adidas_1**: Diseños alternativos de Adidas
|
137 |
+
- **adidas_2**: Variantes especializadas de Adidas
|
138 |
|
139 |
+
### 📸 Estadísticas del Dataset
|
140 |
+
- **Total de Imágenes**: 1,200+ muestras
|
141 |
+
- **Conjunto de Entrenamiento**: 70% (840+ imágenes)
|
142 |
+
- **Conjunto de Validación**: 20% (240+ imágenes)
|
143 |
+
- **Conjunto de Prueba**: 10% (120+ imágenes)
|
144 |
+
- **Resolución de Imagen**: 416×416 píxeles
|
145 |
+
- **Formato de Anotación**: Formato YOLO
|
|
|
|
|
146 |
|
147 |
---
|
148 |
|
149 |
+
## 🎯 Guía de Selección de Modelo
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
+
### 🚀 Elige **Nano** si necesitas:
|
152 |
+
- ✅ Inferencia en tiempo real (>100 FPS)
|
153 |
+
- ✅ Despliegue móvil/edge
|
154 |
+
- ✅ Consumo mínimo de recursos
|
155 |
+
- ✅ Escalado rentable
|
156 |
+
- ✅ Dispositivos con batería
|
157 |
|
158 |
+
### ⚖️ Elige **Small** si necesitas:
|
159 |
+
- ✅ Rendimiento/eficiencia balanceados
|
160 |
+
- ✅ Flexibilidad de despliegue en cloud
|
161 |
+
- ✅ Estabilidad de producción
|
162 |
+
- ✅ Requerimientos de precisión moderados
|
163 |
+
- ✅ Infraestructura de servidor estándar
|
|
|
164 |
|
165 |
+
### 🎯 Elige **Medium** si necesitas:
|
166 |
+
- ✅ Máxima precisión (97.9% [email protected])
|
167 |
+
- ✅ Rendimiento grado investigación
|
168 |
+
- ✅ Aplicaciones críticas
|
169 |
+
- ✅ Capacidades de análisis detallado
|
170 |
+
- ✅ Mejor rendimiento de recall (95.7%)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
---
|
173 |
|
174 |
+
*Última Actualización: 2 de Septiembre, 2025*
|
175 |
+
*Estado de Modelos: ✅ Listos para Producción*
|
176 |
+
*Licencia: MIT*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
|
|
178 |
|
179 |
*Last Updated: September 2, 2025*
|
180 |
|