juanpprim commited on
Commit
823ef65
·
verified ·
1 Parent(s): a4eda90

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,770 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:221
8
+ - loss:BatchSemiHardTripletLoss
9
+ base_model: BAAI/bge-base-en
10
+ widget:
11
+ - source_sentence: '
12
+
13
+ Name : Vitality Systems
14
+
15
+ Category: Facility Management, Health Services
16
+
17
+ Department: Office Administration
18
+
19
+ Location: Chicago, IL
20
+
21
+ Amount: 347.29
22
+
23
+ Card: Office Wellness Initiative
24
+
25
+ Trip Name: unknown
26
+
27
+ '
28
+ sentences:
29
+ - '
30
+
31
+ Name : BizPro Connect
32
+
33
+ Category: Data Services & Analytics, Telecommunications
34
+
35
+ Department: Executive
36
+
37
+ Location: London, UK
38
+
39
+ Amount: 1249.67
40
+
41
+ Card: Q3 Strategic Enhancement Plan
42
+
43
+ Trip Name: unknown
44
+
45
+ '
46
+ - '
47
+
48
+ Name : Global Insights Group
49
+
50
+ Category: Subscriptions & Memberships, Data Services & Analytics
51
+
52
+ Department: Marketing
53
+
54
+ Location: London, UK
55
+
56
+ Amount: 1245.67
57
+
58
+ Card: Marketing Intelligence Fund
59
+
60
+ Trip Name: unknown
61
+
62
+ '
63
+ - '
64
+
65
+ Name : Allied Workplace Solutions
66
+
67
+ Category: Facility Management, Energy Services
68
+
69
+ Department: Office Administration
70
+
71
+ Location: New York, NY
72
+
73
+ Amount: 861.47
74
+
75
+ Card: Monthly Expenses Allocation
76
+
77
+ Trip Name: unknown
78
+
79
+ '
80
+ - source_sentence: '
81
+
82
+ Name : Café Del Mar
83
+
84
+ Category: Catering Services, Event Planning
85
+
86
+ Department: Sales
87
+
88
+ Location: Barcelona, ES
89
+
90
+ Amount: 578.29
91
+
92
+ Card: Q3 Client Engagement
93
+
94
+ Trip Name: unknown
95
+
96
+ '
97
+ sentences:
98
+ - '
99
+
100
+ Name : TranspoSolutions LLP
101
+
102
+ Category: Corporate Travel Analyst, Expense Management Services
103
+
104
+ Department: Executive
105
+
106
+ Location: New York, NY
107
+
108
+ Amount: 629.45
109
+
110
+ Card: Strategic Partnership Infrastructure
111
+
112
+ Trip Name: Tech Symposium NYC
113
+
114
+ '
115
+ - '
116
+
117
+ Name : Talent Scout Services
118
+
119
+ Category: Professional Services, Recruitment Solutions
120
+
121
+ Department: HR
122
+
123
+ Location: New York, NY
124
+
125
+ Amount: 3200.0
126
+
127
+ Card: Recruitment Excellence Fund
128
+
129
+ Trip Name: unknown
130
+
131
+ '
132
+ - '
133
+
134
+ Name : FastLane Transport
135
+
136
+ Category: Logistics & Transport, Vehicle Services
137
+
138
+ Department: Sales
139
+
140
+ Location: Miami, FL
141
+
142
+ Amount: 158.25
143
+
144
+ Card: Sales Travel Expenses
145
+
146
+ Trip Name: unknown
147
+
148
+ '
149
+ - source_sentence: '
150
+
151
+ Name : CleverCo
152
+
153
+ Category: Software & Licenses
154
+
155
+ Department: Customer Success
156
+
157
+ Location: Amsterdam, Netherlands
158
+
159
+ Amount: 2999.99
160
+
161
+ Card: Digital Engagement Tools
162
+
163
+ Trip Name: unknown
164
+
165
+ '
166
+ sentences:
167
+ - '
168
+
169
+ Name : Miller & Gartner
170
+
171
+ Category: Consulting, Business Expense
172
+
173
+ Department: Legal
174
+
175
+ Location: Chicago, IL
176
+
177
+ Amount: 1500.0
178
+
179
+ Card: Legal Fund
180
+
181
+ Trip Name: unknown
182
+
183
+ '
184
+ - '
185
+
186
+ Name : Urban Mobility Solutions
187
+
188
+ Category: Transportation Services, Leasing Services
189
+
190
+ Department: Executive
191
+
192
+ Location: Chicago, IL
193
+
194
+ Amount: 1023.45
195
+
196
+ Card: Strategic Partnership Building
197
+
198
+ Trip Name: Vendor Contract Negotiations
199
+
200
+ '
201
+ - '
202
+
203
+ Name : Tech Haven Solutions
204
+
205
+ Category: Integrated Systems Provider, Custom Hardware Solutions
206
+
207
+ Department: IT Operations
208
+
209
+ Location: Toronto, Canada
210
+
211
+ Amount: 1550.43
212
+
213
+ Card: Infrastructure Upgrades Project
214
+
215
+ Trip Name: unknown
216
+
217
+ '
218
+ - source_sentence: '
219
+
220
+ Name : Globex Solutions
221
+
222
+ Category: Financial Software, Data Management
223
+
224
+ Department: Finance
225
+
226
+ Location: New York, NY
227
+
228
+ Amount: 1324.57
229
+
230
+ Card: Global Revenue Enhancement Initiative
231
+
232
+ Trip Name: unknown
233
+
234
+ '
235
+ sentences:
236
+ - '
237
+
238
+ Name : CloudSync Security
239
+
240
+ Category: Cloud Solutions, Cybersecurity Services
241
+
242
+ Department: IT Operations
243
+
244
+ Location: Dublin, Ireland
245
+
246
+ Amount: 1239.45
247
+
248
+ Card: Integration Compliance Fund
249
+
250
+ Trip Name: unknown
251
+
252
+ '
253
+ - '
254
+
255
+ Name : Cirrus Insights
256
+
257
+ Category: Customer Engagement Platform, SaaS
258
+
259
+ Department: Sales
260
+
261
+ Location: Austin, TX
262
+
263
+ Amount: 1899.99
264
+
265
+ Card: Annual Software Licensing Fund
266
+
267
+ Trip Name: unknown
268
+
269
+ '
270
+ - '
271
+
272
+ Name : Innovative Patents Co.
273
+
274
+ Category: Intellectual Property Services, Legal Services
275
+
276
+ Department: Legal
277
+
278
+ Location: New York, NY
279
+
280
+ Amount: 3250.0
281
+
282
+ Card: Patent Acquisition Fund
283
+
284
+ Trip Name: unknown
285
+
286
+ '
287
+ - source_sentence: '
288
+
289
+ Name : TechSavvy Solutions
290
+
291
+ Category: Software Services, Online Subscription
292
+
293
+ Department: Engineering
294
+
295
+ Location: Austin, TX
296
+
297
+ Amount: 1200.0
298
+
299
+ Card: Annual Engineering Tools Budget
300
+
301
+ Trip Name: unknown
302
+
303
+ '
304
+ sentences:
305
+ - '
306
+
307
+ Name : Kanzan Solutions
308
+
309
+ Category: Consulting Services, Business Advisory
310
+
311
+ Department: Legal
312
+
313
+ Location: Tokyo, Japan
314
+
315
+ Amount: 3900.75
316
+
317
+ Card: Quarterly Compliance Review
318
+
319
+ Trip Name: unknown
320
+
321
+ '
322
+ - '
323
+
324
+ Name : Omachi Meitetsu
325
+
326
+ Category: Transportation Services, Travel Services
327
+
328
+ Department: Sales
329
+
330
+ Location: Hakkuba Japan
331
+
332
+ Amount: 120.0
333
+
334
+ Card: Quarterly Travel Expenses
335
+
336
+ Trip Name: unknown
337
+
338
+ '
339
+ - '
340
+
341
+ Name : Globex Tech Solutions
342
+
343
+ Category: Office Equipment Providers, IT Services & Solutions
344
+
345
+ Department: IT Operations
346
+
347
+ Location: New York, NY
348
+
349
+ Amount: 1589.75
350
+
351
+ Card: Annual IT Enhancement Budget
352
+
353
+ Trip Name: unknown
354
+
355
+ '
356
+ pipeline_tag: sentence-similarity
357
+ library_name: sentence-transformers
358
+ metrics:
359
+ - cosine_accuracy
360
+ - dot_accuracy
361
+ - manhattan_accuracy
362
+ - euclidean_accuracy
363
+ - max_accuracy
364
+ model-index:
365
+ - name: SentenceTransformer based on BAAI/bge-base-en
366
+ results:
367
+ - task:
368
+ type: triplet
369
+ name: Triplet
370
+ dataset:
371
+ name: bge base en train
372
+ type: bge-base-en-train
373
+ metrics:
374
+ - type: cosine_accuracy
375
+ value: 0.8280542986425339
376
+ name: Cosine Accuracy
377
+ - type: dot_accuracy
378
+ value: 0.17194570135746606
379
+ name: Dot Accuracy
380
+ - type: manhattan_accuracy
381
+ value: 0.8280542986425339
382
+ name: Manhattan Accuracy
383
+ - type: euclidean_accuracy
384
+ value: 0.8280542986425339
385
+ name: Euclidean Accuracy
386
+ - type: max_accuracy
387
+ value: 0.8280542986425339
388
+ name: Max Accuracy
389
+ - task:
390
+ type: triplet
391
+ name: Triplet
392
+ dataset:
393
+ name: bge base en eval
394
+ type: bge-base-en-eval
395
+ metrics:
396
+ - type: cosine_accuracy
397
+ value: 0.9714285714285714
398
+ name: Cosine Accuracy
399
+ - type: dot_accuracy
400
+ value: 0.02857142857142857
401
+ name: Dot Accuracy
402
+ - type: manhattan_accuracy
403
+ value: 0.9714285714285714
404
+ name: Manhattan Accuracy
405
+ - type: euclidean_accuracy
406
+ value: 0.9714285714285714
407
+ name: Euclidean Accuracy
408
+ - type: max_accuracy
409
+ value: 0.9714285714285714
410
+ name: Max Accuracy
411
+ ---
412
+
413
+ # SentenceTransformer based on BAAI/bge-base-en
414
+
415
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
416
+
417
+ ## Model Details
418
+
419
+ ### Model Description
420
+ - **Model Type:** Sentence Transformer
421
+ - **Base model:** [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) <!-- at revision b737bf5dcc6ee8bdc530531266b4804a5d77b5d8 -->
422
+ - **Maximum Sequence Length:** 512 tokens
423
+ - **Output Dimensionality:** 768 tokens
424
+ - **Similarity Function:** Cosine Similarity
425
+ <!-- - **Training Dataset:** Unknown -->
426
+ <!-- - **Language:** Unknown -->
427
+ <!-- - **License:** Unknown -->
428
+
429
+ ### Model Sources
430
+
431
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
432
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
433
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
434
+
435
+ ### Full Model Architecture
436
+
437
+ ```
438
+ SentenceTransformer(
439
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
440
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
441
+ (2): Normalize()
442
+ )
443
+ ```
444
+
445
+ ## Usage
446
+
447
+ ### Direct Usage (Sentence Transformers)
448
+
449
+ First install the Sentence Transformers library:
450
+
451
+ ```bash
452
+ pip install -U sentence-transformers
453
+ ```
454
+
455
+ Then you can load this model and run inference.
456
+ ```python
457
+ from sentence_transformers import SentenceTransformer
458
+
459
+ # Download from the 🤗 Hub
460
+ model = SentenceTransformer("juanpprim/finetuned-bge-base-en")
461
+ # Run inference
462
+ sentences = [
463
+ '\nName : TechSavvy Solutions\nCategory: Software Services, Online Subscription\nDepartment: Engineering\nLocation: Austin, TX\nAmount: 1200.0\nCard: Annual Engineering Tools Budget\nTrip Name: unknown\n',
464
+ '\nName : Omachi Meitetsu\nCategory: Transportation Services, Travel Services\nDepartment: Sales\nLocation: Hakkuba Japan\nAmount: 120.0\nCard: Quarterly Travel Expenses\nTrip Name: unknown\n',
465
+ '\nName : Globex Tech Solutions\nCategory: Office Equipment Providers, IT Services & Solutions\nDepartment: IT Operations\nLocation: New York, NY\nAmount: 1589.75\nCard: Annual IT Enhancement Budget\nTrip Name: unknown\n',
466
+ ]
467
+ embeddings = model.encode(sentences)
468
+ print(embeddings.shape)
469
+ # [3, 768]
470
+
471
+ # Get the similarity scores for the embeddings
472
+ similarities = model.similarity(embeddings, embeddings)
473
+ print(similarities.shape)
474
+ # [3, 3]
475
+ ```
476
+
477
+ <!--
478
+ ### Direct Usage (Transformers)
479
+
480
+ <details><summary>Click to see the direct usage in Transformers</summary>
481
+
482
+ </details>
483
+ -->
484
+
485
+ <!--
486
+ ### Downstream Usage (Sentence Transformers)
487
+
488
+ You can finetune this model on your own dataset.
489
+
490
+ <details><summary>Click to expand</summary>
491
+
492
+ </details>
493
+ -->
494
+
495
+ <!--
496
+ ### Out-of-Scope Use
497
+
498
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
499
+ -->
500
+
501
+ ## Evaluation
502
+
503
+ ### Metrics
504
+
505
+ #### Triplet
506
+ * Dataset: `bge-base-en-train`
507
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
508
+
509
+ | Metric | Value |
510
+ |:-------------------|:-----------|
511
+ | cosine_accuracy | 0.8281 |
512
+ | dot_accuracy | 0.1719 |
513
+ | manhattan_accuracy | 0.8281 |
514
+ | euclidean_accuracy | 0.8281 |
515
+ | **max_accuracy** | **0.8281** |
516
+
517
+ #### Triplet
518
+ * Dataset: `bge-base-en-eval`
519
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:-------------------|:-----------|
523
+ | cosine_accuracy | 0.9714 |
524
+ | dot_accuracy | 0.0286 |
525
+ | manhattan_accuracy | 0.9714 |
526
+ | euclidean_accuracy | 0.9714 |
527
+ | **max_accuracy** | **0.9714** |
528
+
529
+ <!--
530
+ ## Bias, Risks and Limitations
531
+
532
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
533
+ -->
534
+
535
+ <!--
536
+ ### Recommendations
537
+
538
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
539
+ -->
540
+
541
+ ## Training Details
542
+
543
+ ### Training Dataset
544
+
545
+ #### Unnamed Dataset
546
+
547
+
548
+ * Size: 221 training samples
549
+ * Columns: <code>sentence</code> and <code>label</code>
550
+ * Approximate statistics based on the first 221 samples:
551
+ | | sentence | label |
552
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
553
+ | type | string | int |
554
+ | details | <ul><li>min: 32 tokens</li><li>mean: 39.7 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~4.52%</li><li>1: ~3.17%</li><li>2: ~3.17%</li><li>3: ~4.52%</li><li>4: ~5.43%</li><li>5: ~4.07%</li><li>6: ~4.52%</li><li>7: ~4.07%</li><li>8: ~3.62%</li><li>9: ~3.62%</li><li>10: ~3.17%</li><li>11: ~2.71%</li><li>12: ~3.62%</li><li>13: ~3.17%</li><li>14: ~3.62%</li><li>15: ~2.26%</li><li>16: ~4.52%</li><li>17: ~4.07%</li><li>18: ~4.07%</li><li>19: ~3.17%</li><li>20: ~4.98%</li><li>21: ~3.17%</li><li>22: ~5.43%</li><li>23: ~3.62%</li><li>24: ~4.07%</li><li>25: ~1.81%</li><li>26: ~1.81%</li></ul> |
555
+ * Samples:
556
+ | sentence | label |
557
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
558
+ | <code><br>Name : Palace Suites<br>Category: Hotel Accommodation, Event Outsourcing<br>Department: Marketing<br>Location: Amsterdam, NL<br>Amount: 1278.64<br>Card: Annual Conference Stay<br>Trip Name: 2023 Innovation Summit<br></code> | <code>0</code> |
559
+ | <code><br>Name : BuroPro Services<br>Category: Facilities Management, Maintenance Solutions<br>Department: Office Administration<br>Location: Berlin, Germany<br>Amount: 879.99<br>Card: Monthly Equipment Oversight<br>Trip Name: unknown<br></code> | <code>1</code> |
560
+ | <code><br>Name : TechXperts Global<br>Category: IT Services, Consulting<br>Department: IT Operations<br>Location: Berlin, Germany<br>Amount: 987.49<br>Card: Quarterly System Assessment<br>Trip Name: unknown<br></code> | <code>2</code> |
561
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
562
+
563
+ ### Evaluation Dataset
564
+
565
+ #### Unnamed Dataset
566
+
567
+
568
+ * Size: 55 evaluation samples
569
+ * Columns: <code>sentence</code> and <code>label</code>
570
+ * Approximate statistics based on the first 55 samples:
571
+ | | sentence | label |
572
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
573
+ | type | string | int |
574
+ | details | <ul><li>min: 34 tokens</li><li>mean: 39.07 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>0: ~1.82%</li><li>1: ~7.27%</li><li>2: ~1.82%</li><li>3: ~1.82%</li><li>4: ~1.82%</li><li>5: ~1.82%</li><li>6: ~10.91%</li><li>7: ~5.45%</li><li>8: ~3.64%</li><li>9: ~3.64%</li><li>10: ~14.55%</li><li>12: ~1.82%</li><li>13: ~3.64%</li><li>14: ~3.64%</li><li>15: ~3.64%</li><li>16: ~3.64%</li><li>19: ~9.09%</li><li>20: ~3.64%</li><li>22: ~1.82%</li><li>23: ~3.64%</li><li>24: ~3.64%</li><li>25: ~5.45%</li><li>26: ~1.82%</li></ul> |
575
+ * Samples:
576
+ | sentence | label |
577
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------|
578
+ | <code><br>Name : NetSolve Consulting<br>Category: IT Consulting, Infrastructure Solutions<br>Department: IT Operations<br>Location: Berlin, Germany<br>Amount: 892.45<br>Card: Tech Infrastructure Enhancement<br>Trip Name: unknown<br></code> | <code>2</code> |
579
+ | <code><br>Name : Urban Mobility Solutions<br>Category: Transportation Services, Leasing Services<br>Department: Executive<br>Location: Chicago, IL<br>Amount: 1023.45<br>Card: Strategic Partnership Building<br>Trip Name: Vendor Contract Negotiations<br></code> | <code>10</code> |
580
+ | <code><br>Name : CloudSync Security<br>Category: Cloud Solutions, Cybersecurity Services<br>Department: IT Operations<br>Location: Dublin, Ireland<br>Amount: 1239.45<br>Card: Integration Compliance Fund<br>Trip Name: unknown<br></code> | <code>15</code> |
581
+ * Loss: [<code>BatchSemiHardTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchsemihardtripletloss)
582
+
583
+ ### Training Hyperparameters
584
+ #### Non-Default Hyperparameters
585
+
586
+ - `eval_strategy`: steps
587
+ - `per_device_train_batch_size`: 16
588
+ - `per_device_eval_batch_size`: 16
589
+ - `learning_rate`: 2e-05
590
+ - `num_train_epochs`: 5
591
+ - `warmup_ratio`: 0.1
592
+ - `batch_sampler`: no_duplicates
593
+
594
+ #### All Hyperparameters
595
+ <details><summary>Click to expand</summary>
596
+
597
+ - `overwrite_output_dir`: False
598
+ - `do_predict`: False
599
+ - `eval_strategy`: steps
600
+ - `prediction_loss_only`: True
601
+ - `per_device_train_batch_size`: 16
602
+ - `per_device_eval_batch_size`: 16
603
+ - `per_gpu_train_batch_size`: None
604
+ - `per_gpu_eval_batch_size`: None
605
+ - `gradient_accumulation_steps`: 1
606
+ - `eval_accumulation_steps`: None
607
+ - `learning_rate`: 2e-05
608
+ - `weight_decay`: 0.0
609
+ - `adam_beta1`: 0.9
610
+ - `adam_beta2`: 0.999
611
+ - `adam_epsilon`: 1e-08
612
+ - `max_grad_norm`: 1.0
613
+ - `num_train_epochs`: 5
614
+ - `max_steps`: -1
615
+ - `lr_scheduler_type`: linear
616
+ - `lr_scheduler_kwargs`: {}
617
+ - `warmup_ratio`: 0.1
618
+ - `warmup_steps`: 0
619
+ - `log_level`: passive
620
+ - `log_level_replica`: warning
621
+ - `log_on_each_node`: True
622
+ - `logging_nan_inf_filter`: True
623
+ - `save_safetensors`: True
624
+ - `save_on_each_node`: False
625
+ - `save_only_model`: False
626
+ - `restore_callback_states_from_checkpoint`: False
627
+ - `no_cuda`: False
628
+ - `use_cpu`: False
629
+ - `use_mps_device`: False
630
+ - `seed`: 42
631
+ - `data_seed`: None
632
+ - `jit_mode_eval`: False
633
+ - `use_ipex`: False
634
+ - `bf16`: False
635
+ - `fp16`: False
636
+ - `fp16_opt_level`: O1
637
+ - `half_precision_backend`: auto
638
+ - `bf16_full_eval`: False
639
+ - `fp16_full_eval`: False
640
+ - `tf32`: None
641
+ - `local_rank`: 0
642
+ - `ddp_backend`: None
643
+ - `tpu_num_cores`: None
644
+ - `tpu_metrics_debug`: False
645
+ - `debug`: []
646
+ - `dataloader_drop_last`: False
647
+ - `dataloader_num_workers`: 0
648
+ - `dataloader_prefetch_factor`: None
649
+ - `past_index`: -1
650
+ - `disable_tqdm`: False
651
+ - `remove_unused_columns`: True
652
+ - `label_names`: None
653
+ - `load_best_model_at_end`: False
654
+ - `ignore_data_skip`: False
655
+ - `fsdp`: []
656
+ - `fsdp_min_num_params`: 0
657
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
658
+ - `fsdp_transformer_layer_cls_to_wrap`: None
659
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
660
+ - `deepspeed`: None
661
+ - `label_smoothing_factor`: 0.0
662
+ - `optim`: adamw_torch
663
+ - `optim_args`: None
664
+ - `adafactor`: False
665
+ - `group_by_length`: False
666
+ - `length_column_name`: length
667
+ - `ddp_find_unused_parameters`: None
668
+ - `ddp_bucket_cap_mb`: None
669
+ - `ddp_broadcast_buffers`: False
670
+ - `dataloader_pin_memory`: True
671
+ - `dataloader_persistent_workers`: False
672
+ - `skip_memory_metrics`: True
673
+ - `use_legacy_prediction_loop`: False
674
+ - `push_to_hub`: False
675
+ - `resume_from_checkpoint`: None
676
+ - `hub_model_id`: None
677
+ - `hub_strategy`: every_save
678
+ - `hub_private_repo`: False
679
+ - `hub_always_push`: False
680
+ - `gradient_checkpointing`: False
681
+ - `gradient_checkpointing_kwargs`: None
682
+ - `include_inputs_for_metrics`: False
683
+ - `eval_do_concat_batches`: True
684
+ - `fp16_backend`: auto
685
+ - `push_to_hub_model_id`: None
686
+ - `push_to_hub_organization`: None
687
+ - `mp_parameters`:
688
+ - `auto_find_batch_size`: False
689
+ - `full_determinism`: False
690
+ - `torchdynamo`: None
691
+ - `ray_scope`: last
692
+ - `ddp_timeout`: 1800
693
+ - `torch_compile`: False
694
+ - `torch_compile_backend`: None
695
+ - `torch_compile_mode`: None
696
+ - `dispatch_batches`: None
697
+ - `split_batches`: None
698
+ - `include_tokens_per_second`: False
699
+ - `include_num_input_tokens_seen`: False
700
+ - `neftune_noise_alpha`: None
701
+ - `optim_target_modules`: None
702
+ - `batch_eval_metrics`: False
703
+ - `eval_on_start`: False
704
+ - `batch_sampler`: no_duplicates
705
+ - `multi_dataset_batch_sampler`: proportional
706
+
707
+ </details>
708
+
709
+ ### Training Logs
710
+ | Epoch | Step | bge-base-en-eval_max_accuracy | bge-base-en-train_max_accuracy |
711
+ |:-----:|:----:|:-----------------------------:|:------------------------------:|
712
+ | 0 | 0 | - | 0.8281 |
713
+ | 5.0 | 70 | 0.9714 | - |
714
+
715
+
716
+ ### Framework Versions
717
+ - Python: 3.9.22
718
+ - Sentence Transformers: 3.1.1
719
+ - Transformers: 4.42.2
720
+ - PyTorch: 2.7.0+cu126
721
+ - Accelerate: 1.3.0
722
+ - Datasets: 3.6.0
723
+ - Tokenizers: 0.19.1
724
+
725
+ ## Citation
726
+
727
+ ### BibTeX
728
+
729
+ #### Sentence Transformers
730
+ ```bibtex
731
+ @inproceedings{reimers-2019-sentence-bert,
732
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
733
+ author = "Reimers, Nils and Gurevych, Iryna",
734
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
735
+ month = "11",
736
+ year = "2019",
737
+ publisher = "Association for Computational Linguistics",
738
+ url = "https://arxiv.org/abs/1908.10084",
739
+ }
740
+ ```
741
+
742
+ #### BatchSemiHardTripletLoss
743
+ ```bibtex
744
+ @misc{hermans2017defense,
745
+ title={In Defense of the Triplet Loss for Person Re-Identification},
746
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
747
+ year={2017},
748
+ eprint={1703.07737},
749
+ archivePrefix={arXiv},
750
+ primaryClass={cs.CV}
751
+ }
752
+ ```
753
+
754
+ <!--
755
+ ## Glossary
756
+
757
+ *Clearly define terms in order to be accessible across audiences.*
758
+ -->
759
+
760
+ <!--
761
+ ## Model Card Authors
762
+
763
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
764
+ -->
765
+
766
+ <!--
767
+ ## Model Card Contact
768
+
769
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
770
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.42.2",
5
+ "pytorch": "2.7.0+cu126"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37a7f32103f6a6675310eb66db02ebb12f7f5b5678598206ae566637efda5587
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff