--- license: mit library_name: peft tags: - generated_from_trainer datasets: - viggo base_model: microsoft/phi-2 model-index: - name: phi2-viggo-finetune results: [] --- # phi2-viggo-finetune This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the viggo dataset. It achieves the following results on the evaluation set: - Loss: 0.2331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9356 | 0.04 | 50 | 1.4822 | | 0.7214 | 0.08 | 100 | 0.5014 | | 0.4192 | 0.12 | 150 | 0.3561 | | 0.3546 | 0.16 | 200 | 0.3135 | | 0.3119 | 0.2 | 250 | 0.2935 | | 0.2926 | 0.24 | 300 | 0.2799 | | 0.283 | 0.27 | 350 | 0.2711 | | 0.2731 | 0.31 | 400 | 0.2629 | | 0.2637 | 0.35 | 450 | 0.2583 | | 0.2693 | 0.39 | 500 | 0.2518 | | 0.2634 | 0.43 | 550 | 0.2478 | | 0.2652 | 0.47 | 600 | 0.2453 | | 0.2514 | 0.51 | 650 | 0.2429 | | 0.2588 | 0.55 | 700 | 0.2394 | | 0.2321 | 0.59 | 750 | 0.2381 | | 0.2348 | 0.63 | 800 | 0.2357 | | 0.2414 | 0.67 | 850 | 0.2355 | | 0.2455 | 0.71 | 900 | 0.2337 | | 0.2442 | 0.74 | 950 | 0.2331 | | 0.2192 | 0.78 | 1000 | 0.2331 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0