--- license: apache-2.0 base_model: - lerobot/pi0 pipeline_tag: robotics --- # INTACT Probing Suite: Pi0 from scratch on BridgeV2 > 📦 **This model is part of the [INTACT Probing Suite Collection](https://huggingface.co/collections/ai4ce/intact-probing-suite-684e5601e9ed640fdd9b994b)** > Explore other variants: > - [Pi0 fintuned on BridgeV2](https://huggingface.co/juexzz/INTACT-pi0-finetune-bridge) > - [Pi0 finetuned with paraphrase on BridgeV2](https://huggingface.co/juexzz/INTACT-pi0-finetune-rephrase-bridge) ## INTACT-pi0-scratch-bridge This repository contains a checkpoint of the Pi0 model ([HF implementation](https://huggingface.co/lerobot/pi0) | [Paper](https://arxiv.org/abs/2410.24164v1)) *initialized from PaliGemma and trained directly ("from scratch")* on the BridgeV2 dataset for robotic manipulation tasks. The model is later used for testing on the [Simpler Environment](https://github.com/simpler-env/SimplerEnv) and our [INTACT](https://github.com/ai4ce/INT-ACT) Probing Suite for the generalization boundaries of VLA models. **Paper**: [From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models](https://arxiv.org/abs/2506.09930) ## Model Details - **Base Model**: [lerobot/pi0](https://huggingface.co/lerobot/pi0) - **Training Dataset**: [BridgeV2](https://rail-berkeley.github.io/bridgedata/) - **Model Type**: Vision-Language-Action (VLA) model for robotics - **Fine-tuning Method**: See our [paper](https://arxiv.org/abs/2506.09930) - **Training Framework**: See our [repository](https://github.com/ai4ce/INT-ACT) ## Quick Start ### Usage in INTACT ```shell git clone --recurse-submodules https://github.com/ai4ce/INT-ACT.git cd INT-ACT uv sync source .venv/bin/activate python ``` Or directly in python with Lerobot, see blow: ### Integration with LeRobot First, install lerobot ```bash pip install lerobot ``` Then ```python import torch from lerobot.common.policies.pi0.modeling_pi0 import Pi0Policy # Load model policy = Pi0Policy.from_pretrained("juexzz/INTACT-pi0-scratch-bridge") # Inference with torch.no_grad(): actions = policy.select_action(batch) ``` ### Training Configuration - **Training Steps**: 15 epochs ~22695 steps. - **Batch Size**: 1024 - **Learning Rate**: 1e-5 - **Hardware**: 4 H100/A100 - **Input Modalities**: single image (to work with SimplerEnv), 1 language instruction, 1 robot state. - **Output**: robot actions (delta EEF) with chunk size of 4. For more details please refer to our [paper](https://arxiv.org/abs/2506.09930) and [code](https://github.com/ai4ce/INT-ACT) ## Evaluation **Checkpoint choice** After training 15 epochs, we sweep the checkpoint at epoch 1, 2, 3, 4, 5, 10, 15 for performance on the original 4 Bridge tasks in the SimplerEnv, and choose the checkpoint with *best average performance* for each of the three Pi0 variants. Therefore, you may still get a better success rate for a specific task at other checkpoints. As a result, the best checkpoint for this pi0 finetune model is at step 22695 (epoch 15). The comparison of their performance on Simpler are shown below. ### Performance Comparison on SimplerEnv **Success rate** comparison on the SimplerEnv with other pi0 variants and some other baselines experimented in our INTACT suite. For a more detailed comparison, please refer to the [paper](https://arxiv.org/abs/2506.09930). | Model | carrot_on_plate | eggplant_in_basket | stack_cube | spoon_on_towel | |-------|-----------------|-------------------|------------|----------------| | [Pi0 finetune](https://huggingface.co/juexzz/INTACT-pi0-finetune-bridge) | 0.361 | 0.819 | 0.264 | 0.458 | | [Pi0 finetune rephrase](https://huggingface.co/juexzz/INTACT-pi0-finetune-rephrase-bridge) | 0.500 | 0.944 | 0.222 | 0.597 | | **Pi0 scratch(this model)** | 0.542 | 0.903 | 0.403 | 0.875 | | Spatial VLA | 0.125 | 0.958 | 0.292 | 0.208 | | Magma | 0.250 | 0.611 | 0.097 | 0.208 | | Octo Small | 0.014 | 0.097 | 0.000 | 0.097 | | Octo Base | 0.014 | 0.306 | 0.000 | 0.014 | ## Citation If you use this model in your research, please cite: ```bibtex @article{fang2025intention, title={From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models}, author={Fang, Irving and Zhang, Juexiao and Tong, Shengbang and Feng, Chen}, journal={arXiv preprint arXiv:2506.09930}, year={2025} } ``` ## Related Work - **Pi0 (official)**: [pi0 (JAX)](https://github.com/Physical-Intelligence/openpi) - **Base Model (Pi0 HF)**: [lerobot/pi0](https://huggingface.co/lerobot/pi0) - **Dataset**: [BridgeV2](https://bridge-v2.github.io/) - **Framework**: [LeRobot](https://github.com/huggingface/lerobot) - **Simpler Environment**: [SimplerEnv](https://github.com/simpler-env/SimplerEnv) - **Open-source Pi0 Implementation by Allen Ren**: [open-pi-zero](https://github.com/allenzren/open-pi-zero) ## License This model is released under the Apache 2.0 license. Please see the base model's license for any additional restrictions. ## Support For questions about this model: - 📧 Open an issue in this repository - 💬 Discussion tab for community questions - 📖 Check our [paper](https://arxiv.org/abs/2506.09930) for technical details --- *Last updated: June 2025*