File size: 19,232 Bytes
7e56761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
#!/usr/bin/env python3
"""
RF-DETR SoccerNet Inference - Professional Hugging Face Integration
A state-of-the-art RF-DETR-Large model fine-tuned on the SoccerNet-Tracking dataset
for detecting objects in soccer videos. Returns detections as pandas DataFrame.
Classes: ball, player, referee, goalkeeper
Performance: 85.7% mAP@50, 49.8% mAP
"""
import cv2
import pandas as pd
import numpy as np
import torch
from rfdetr import RFDETRBase
from PIL import Image
from typing import Union, Optional, List, Dict, Tuple
import os
from tqdm import tqdm
import time
import json
from pathlib import Path
import warnings
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
class RFDETRSoccerNet:
"""
RF-DETR model trained on SoccerNet dataset for soccer video analysis.
Returns detections as pandas DataFrame with comprehensive metadata.
Performance:
- mAP@50: 85.7%
- mAP: 49.8%
- Classes: ball, player, referee, goalkeeper
- Training: 42,750 images, NVIDIA A100 40GB, ~14 hours
"""
def __init__(self, model_path: str = "weights/checkpoint_best_regular.pth", device: str = "auto"):
"""
Initialize the RF-DETR SoccerNet model.
Args:
model_path: Path to the model checkpoint (default: "weights/checkpoint_best_regular.pth")
device: Device to use ("cuda", "cpu", or "auto" for automatic selection)
"""
# Determine device
if device == "auto":
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
print(f"π Initializing RF-DETR SoccerNet on {self.device.upper()}")
# Class configuration for SoccerNet dataset
self.class_names = ['ball', 'player', 'referee', 'goalkeeper']
self.num_classes = len(self.class_names)
# Model metadata
self.model_info = {
"architecture": "RF-DETR-Large",
"parameters": "128M",
"input_size": [1280, 1280],
"performance": {
"mAP@50": 0.857,
"mAP": 0.498,
"mAP@75": 0.520
}
}
# Load model
self.model_path = Path(model_path)
self.model = None
self._load_model()
print("β
RF-DETR SoccerNet ready for inference!")
def _load_model(self):
"""Load the RF-DETR model with trained checkpoint."""
try:
print(f"π¦ Loading model from {self.model_path}...")
# Initialize base model
self.model = RFDETRBase()
# Reinitialize detection head for 4 classes (critical for compatibility)
print(f"π§ Reinitializing detection head for {self.num_classes} classes...")
self.model.model.model.reinitialize_detection_head(self.num_classes)
# Load checkpoint
if self.model_path.exists():
checkpoint = torch.load(str(self.model_path), map_location=self.device, weights_only=False)
# Extract model state
if 'model' in checkpoint:
model_state = checkpoint['model']
elif 'model_state_dict' in checkpoint:
model_state = checkpoint['model_state_dict']
else:
model_state = checkpoint
# Load state dict
self.model.model.model.load_state_dict(model_state)
# Show checkpoint info
if 'best_mAP' in checkpoint:
print(f"π Model mAP: {checkpoint['best_mAP']:.3f}")
if 'epoch' in checkpoint:
print(f"π Trained epochs: {checkpoint['epoch']}")
else:
raise FileNotFoundError(f"Checkpoint not found: {self.model_path}")
# Move to device and set eval mode
self.model.model.model.to(self.device)
self.model.model.model.eval()
print(f"β
Model loaded successfully!")
except Exception as e:
print(f"β Error loading model: {e}")
raise
def process_video(self,
video_path: str,
confidence_threshold: float = 0.5,
frame_skip: int = 1,
max_frames: Optional[int] = None,
save_results: bool = False,
output_dir: Optional[str] = None) -> pd.DataFrame:
"""
Process a video and return detections as DataFrame.
Args:
video_path: Path to input video
confidence_threshold: Minimum confidence for detections (0.0-1.0)
frame_skip: Process every N frames (1 = all frames)
max_frames: Maximum frames to process (None = all)
save_results: Whether to save results to file
output_dir: Directory to save results (optional)
Returns:
DataFrame with columns: frame, timestamp, class_name, x1, y1, x2, y2, width, height, confidence
"""
print(f"π¬ Processing video: {video_path}")
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video: {video_path}")
# Video metadata
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"πΉ Video info: {total_frames} frames, {fps:.2f} FPS, {width}x{height}")
# Process frames
results = []
frame_count = 0
processed_count = 0
start_time = time.time()
frames_to_process = min(total_frames, max_frames) if max_frames else total_frames
pbar = tqdm(total=frames_to_process, desc="Processing frames", unit="frame")
while cap.isOpened() and frame_count < frames_to_process:
ret, frame = cap.read()
if not ret:
break
# Process frame based on skip rate
if frame_count % frame_skip == 0:
# Convert to RGB for model
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(frame_rgb)
# Run inference
with torch.no_grad():
detections = self.model.predict(pil_image, threshold=confidence_threshold)
# Process detections
if detections is not None and len(detections) > 0:
for i in range(len(detections)):
try:
class_id = int(detections.class_id[i])
if 0 <= class_id < len(self.class_names):
x1, y1, x2, y2 = detections.xyxy[i].tolist()
results.append({
'frame': frame_count,
'timestamp': frame_count / fps,
'class_name': self.class_names[class_id],
'class_id': class_id,
'x1': float(x1),
'y1': float(y1),
'x2': float(x2),
'y2': float(y2),
'width': float(x2 - x1),
'height': float(y2 - y1),
'confidence': float(detections.confidence[i]),
'center_x': float((x1 + x2) / 2),
'center_y': float((y1 + y2) / 2),
'area': float((x2 - x1) * (y2 - y1))
})
except Exception as e:
print(f"β οΈ Error processing detection {i}: {e}")
continue
processed_count += 1
frame_count += 1
pbar.update(1)
cap.release()
pbar.close()
# Create DataFrame
df = pd.DataFrame(results)
# Processing summary
processing_time = time.time() - start_time
fps_processed = processed_count / processing_time if processing_time > 0 else 0
print(f"\nβ
Processing complete!")
print(f"π Stats:")
print(f" - Total frames: {frame_count:,}")
print(f" - Frames processed: {processed_count:,}")
print(f" - Processing time: {processing_time:.1f}s")
print(f" - Processing speed: {fps_processed:.1f} FPS")
print(f" - Total detections: {len(df):,}")
if len(df) > 0:
print(f"\nπ― Detections by class:")
class_counts = df['class_name'].value_counts()
for class_name, count in class_counts.items():
percentage = (count / len(df)) * 100
print(f" - {class_name}: {count:,} ({percentage:.1f}%)")
# Save results if requested
if save_results:
self._save_video_results(df, video_path, output_dir, {
'total_frames': frame_count,
'processed_frames': processed_count,
'processing_time': processing_time,
'fps_processed': fps_processed,
'video_fps': fps,
'video_resolution': f"{width}x{height}"
})
return df
def process_image(self,
image_path: str,
confidence_threshold: float = 0.5) -> pd.DataFrame:
"""
Process a single image and return detections as DataFrame.
Args:
image_path: Path to input image
confidence_threshold: Minimum confidence for detections
Returns:
DataFrame with columns: class_name, x1, y1, x2, y2, width, height, confidence
"""
print(f"πΌοΈ Processing image: {image_path}")
# Load and validate image
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image not found: {image_path}")
image = cv2.imread(image_path)
if image is None:
raise ValueError(f"Could not load image: {image_path}")
# Convert to RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
# Run inference
start_time = time.time()
with torch.no_grad():
detections = self.model.predict(pil_image, threshold=confidence_threshold)
inference_time = time.time() - start_time
# Process results
results = []
if detections is not None and len(detections) > 0:
for i in range(len(detections)):
try:
class_id = int(detections.class_id[i])
if 0 <= class_id < len(self.class_names):
x1, y1, x2, y2 = detections.xyxy[i].tolist()
results.append({
'class_name': self.class_names[class_id],
'class_id': class_id,
'x1': float(x1),
'y1': float(y1),
'x2': float(x2),
'y2': float(y2),
'width': float(x2 - x1),
'height': float(y2 - y1),
'confidence': float(detections.confidence[i]),
'center_x': float((x1 + x2) / 2),
'center_y': float((y1 + y2) / 2),
'area': float((x2 - x1) * (y2 - y1))
})
except Exception as e:
print(f"β οΈ Error processing detection {i}: {e}")
continue
df = pd.DataFrame(results)
print(f"β
Found {len(df)} detections in {inference_time:.3f}s")
if len(df) > 0:
print("π― Detections:")
for class_name, count in df['class_name'].value_counts().items():
print(f" - {class_name}: {count}")
return df
def save_results(self, df: pd.DataFrame, output_path: str, format: str = 'csv', include_metadata: bool = True):
"""
Save DataFrame results to file with optional metadata.
Args:
df: DataFrame with detections
output_path: Output file path
format: 'csv', 'json', or 'parquet'
include_metadata: Whether to include model metadata
"""
output_path = Path(output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
if format.lower() == 'csv':
df.to_csv(output_path, index=False)
elif format.lower() == 'json':
result_data = {
'detections': df.to_dict('records'),
'summary': {
'total_detections': len(df),
'classes': df['class_name'].value_counts().to_dict() if len(df) > 0 else {}
}
}
if include_metadata:
result_data['model_info'] = self.model_info
with open(output_path, 'w') as f:
json.dump(result_data, f, indent=2)
elif format.lower() == 'parquet':
df.to_parquet(output_path, index=False)
else:
raise ValueError(f"Unsupported format: {format}. Use 'csv', 'json', or 'parquet'")
print(f"πΎ Results saved to {output_path}")
def _save_video_results(self, df: pd.DataFrame, video_path: str, output_dir: Optional[str], stats: Dict):
"""Save video processing results with comprehensive metadata."""
if output_dir is None:
output_dir = os.path.dirname(video_path)
video_name = Path(video_path).stem
# Save main results
csv_path = Path(output_dir) / f"{video_name}_detections.csv"
json_path = Path(output_dir) / f"{video_name}_analysis.json"
# CSV with raw data
df.to_csv(csv_path, index=False)
# JSON with analysis
analysis = {
'video_info': {
'path': video_path,
'name': video_name,
**stats
},
'detection_summary': {
'total_detections': len(df),
'classes': df['class_name'].value_counts().to_dict() if len(df) > 0 else {},
'confidence_stats': {
'mean': float(df['confidence'].mean()) if len(df) > 0 else 0,
'median': float(df['confidence'].median()) if len(df) > 0 else 0,
'min': float(df['confidence'].min()) if len(df) > 0 else 0,
'max': float(df['confidence'].max()) if len(df) > 0 else 0
}
},
'model_info': self.model_info,
'detections': df.to_dict('records')
}
with open(json_path, 'w') as f:
json.dump(analysis, f, indent=2)
print(f"π Analysis saved:")
print(f" - CSV: {csv_path}")
print(f" - JSON: {json_path}")
def analyze_ball_possession(self, df: pd.DataFrame, distance_threshold: float = 100) -> pd.DataFrame:
"""
Analyze which players are near the ball (ball possession analysis).
Args:
df: DataFrame from process_video()
distance_threshold: Maximum distance to consider "near ball" (pixels)
Returns:
DataFrame with ball possession events
"""
print(f"β½ Analyzing ball possession (threshold: {distance_threshold}px)")
ball_df = df[df['class_name'] == 'ball'].copy()
player_df = df[df['class_name'] == 'player'].copy()
possession_events = []
for frame in ball_df['frame'].unique():
ball_in_frame = ball_df[ball_df['frame'] == frame]
players_in_frame = player_df[player_df['frame'] == frame]
if len(ball_in_frame) > 0 and len(players_in_frame) > 0:
ball_center = ball_in_frame.iloc[0]
for _, player in players_in_frame.iterrows():
distance = np.sqrt(
(ball_center['center_x'] - player['center_x'])**2 +
(ball_center['center_y'] - player['center_y'])**2
)
if distance <= distance_threshold:
possession_events.append({
'frame': frame,
'timestamp': player['timestamp'],
'player_x': player['center_x'],
'player_y': player['center_y'],
'ball_x': ball_center['center_x'],
'ball_y': ball_center['center_y'],
'distance_to_ball': float(distance),
'ball_confidence': ball_center['confidence'],
'player_confidence': player['confidence']
})
possession_df = pd.DataFrame(possession_events)
if len(possession_df) > 0:
print(f"β
Found {len(possession_df)} possession events")
print(f"π― Average distance to ball: {possession_df['distance_to_ball'].mean():.1f}px")
else:
print("β No possession events found")
return possession_df
def get_model_info(self) -> Dict:
"""Get comprehensive model information."""
return {
**self.model_info,
'classes': self.class_names,
'device': self.device,
'checkpoint_path': str(self.model_path)
}
# Example usage and testing
if __name__ == "__main__":
# Initialize model
print("π RF-DETR SoccerNet Demo")
model = RFDETRSoccerNet()
# Example with sample video (replace with your video path)
# df = model.process_video("sample_soccer_match.mp4", confidence_threshold=0.5)
# model.save_results(df, "match_analysis.json", format="json")
# Example ball possession analysis
# possession_df = model.analyze_ball_possession(df, distance_threshold=100)
# model.save_results(possession_df, "ball_possession.csv")
print("β
Demo complete! Replace with your video path to test.") |