Improve model card: Update paper link, license, add library_name and sample usage (#2)
Browse files- Improve model card: Update paper link, license, add library_name and sample usage (b09e10bdd97ab597238c691575146d69c4876ea0)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
---
|
2 |
-
license: other
|
3 |
-
license_name: qwen
|
4 |
-
license_link: LICENSE
|
5 |
-
datasets:
|
6 |
-
- julien31/soar_arc_train_5M
|
7 |
base_model:
|
8 |
- Qwen/Qwen2.5-72B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pipeline_tag: text-generation
|
|
|
10 |
tags:
|
11 |
- text-generation
|
12 |
- code-generation
|
@@ -16,15 +19,16 @@ tags:
|
|
16 |
- arc-agi
|
17 |
- soar
|
18 |
---
|
|
|
19 |
# SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
|
20 |
|
21 |
<p align="center">
|
22 |
-
🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>   |    📑 <a href="https://
|
23 |
</p>
|
24 |
|
25 |
This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
|
26 |
|
27 |
-
> [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://
|
28 |
>
|
29 |
> Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
|
30 |
> *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
|
@@ -66,10 +70,61 @@ This process creates a powerful feedback loop: the fine-tuned model becomes bett
|
|
66 |
|
67 |
The primary use of this model is to generate a Python function that solves an ARC task. The input to the model should be a formatted prompt containing the training and test examples of the ARC task.
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
For a complete, end-to-end example of how to format the prompt, run inference, execute the generated code, and visualize the results, please refer to the official repository and notebook:
|
70 |
|
71 |
* **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
|
72 |
* **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
|
73 |
|
74 |
-
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made
|
75 |
-
|
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-72B-Instruct
|
4 |
+
datasets:
|
5 |
+
- julien31/soar_arc_train_5M
|
6 |
+
license: apache-2.0
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
pipeline_tag: text-generation
|
12 |
+
library_name: transformers
|
13 |
tags:
|
14 |
- text-generation
|
15 |
- code-generation
|
|
|
19 |
- arc-agi
|
20 |
- soar
|
21 |
---
|
22 |
+
|
23 |
# SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
|
24 |
|
25 |
<p align="center">
|
26 |
+
🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>   |    📑 <a href="https://huggingface.co/papers/2507.14172">Paper</a>    |    📑 <a href="https://julienp.netlify.app/posts/soar/">Blog</a>
|
27 |
</p>
|
28 |
|
29 |
This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
|
30 |
|
31 |
+
> [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://huggingface.co/papers/2507.14172)
|
32 |
>
|
33 |
> Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
|
34 |
> *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
|
|
|
70 |
|
71 |
The primary use of this model is to generate a Python function that solves an ARC task. The input to the model should be a formatted prompt containing the training and test examples of the ARC task.
|
72 |
|
73 |
+
You can load the model using the `transformers` library:
|
74 |
+
|
75 |
+
```python
|
76 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
77 |
+
import torch
|
78 |
+
|
79 |
+
model_id = "julien31/Soar-qwen-72b"
|
80 |
+
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_id,
|
84 |
+
torch_dtype=torch.bfloat16, # or torch.float16 if bfloat16 is not supported by your GPU
|
85 |
+
device_map="auto",
|
86 |
+
)
|
87 |
+
|
88 |
+
# Example prompt structure for an ARC task (simplified)
|
89 |
+
# For full ARC problem formatting and inference details,
|
90 |
+
# refer to the official SOAR repository and notebook.
|
91 |
+
prompt = """
|
92 |
+
Below are examples of input-output pairs for an ARC task:
|
93 |
+
|
94 |
+
Input: [[0,0,0,0,0],[0,0,0,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,0]]
|
95 |
+
Output: [[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0],[0,0,0,0,0]]
|
96 |
+
|
97 |
+
Write a Python function `solve(input_grid)` that transforms the input grid based on the provided examples.
|
98 |
+
```python
|
99 |
+
def solve(input_grid):
|
100 |
+
# Your code here
|
101 |
+
```
|
102 |
+
"""
|
103 |
+
|
104 |
+
messages = [
|
105 |
+
{"role": "user", "content": prompt},
|
106 |
+
]
|
107 |
+
|
108 |
+
# Apply chat template (Qwen2.5 chat format)
|
109 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
110 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
111 |
+
|
112 |
+
# Generate code
|
113 |
+
generated_ids = model.generate(
|
114 |
+
model_inputs.input_ids,
|
115 |
+
max_new_tokens=512,
|
116 |
+
do_sample=True,
|
117 |
+
temperature=0.7,
|
118 |
+
top_p=0.8,
|
119 |
+
)
|
120 |
+
|
121 |
+
generated_text = tokenizer.batch_decode(generated_ids[:, model_inputs.input_ids.shape[1]:], skip_special_tokens=True)[0]
|
122 |
+
print(generated_text)
|
123 |
+
```
|
124 |
+
|
125 |
For a complete, end-to-end example of how to format the prompt, run inference, execute the generated code, and visualize the results, please refer to the official repository and notebook:
|
126 |
|
127 |
* **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
|
128 |
* **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
|
129 |
|
130 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made%20with%20unsloth.png" width="20%" />
|
|