Upload folder using huggingface_hub
Browse files- README.md +150 -0
- features.json +31 -0
- model-card.md +36 -0
README.md
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SimpleConvNetLite: 轻量级CIFAR-10图像分类模型
|
| 2 |
+
|
| 3 |
+
这是一个为快速训练和部署而设计的轻量级卷积神经网络模型,在CIFAR-10数据集的子集上训练,可以在CPU上10分钟内完成训练。
|
| 4 |
+
|
| 5 |
+
## 模型描述
|
| 6 |
+
|
| 7 |
+
SimpleConvNetLite是一个简化版的CNN模型,专为快速训练和部署而设计。模型架构简单,参数量小,可以在资源受限的环境中运行。
|
| 8 |
+
|
| 9 |
+
### 模型架构
|
| 10 |
+
|
| 11 |
+
```
|
| 12 |
+
SimpleConvNetLite(
|
| 13 |
+
(conv1): Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 14 |
+
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 15 |
+
(fc1): Linear(in_features=4096, out_features=64, bias=True)
|
| 16 |
+
(fc2): Linear(in_features=64, out_features=10, bias=True)
|
| 17 |
+
)
|
| 18 |
+
```
|
| 19 |
+
|
| 20 |
+
- 1个卷积层(16个过滤器,3x3卷积核)
|
| 21 |
+
- 1个最大池化层
|
| 22 |
+
- 2个全连接层(64个隐藏单元)
|
| 23 |
+
|
| 24 |
+
参数总量: ~260K
|
| 25 |
+
|
| 26 |
+
## 训练数据
|
| 27 |
+
|
| 28 |
+
模型在CIFAR-10数据集的子集上进行训练:
|
| 29 |
+
|
| 30 |
+
- 只使用原始CIFAR-10数据集的**20%**
|
| 31 |
+
- 训练样本: 10,000张图像(原50,000的20%)
|
| 32 |
+
- 测试样本: 2,000张图像(原10,000的20%)
|
| 33 |
+
- 图像尺寸: 32x32像素,RGB 3通道
|
| 34 |
+
- 类别: 飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船、卡车
|
| 35 |
+
|
| 36 |
+
## 训练过程
|
| 37 |
+
|
| 38 |
+
- **优化器**: Adam (lr=0.001)
|
| 39 |
+
- **批次大小**: 128
|
| 40 |
+
- **训练轮次**: 2
|
| 41 |
+
- **损失函数**: CrossEntropyLoss
|
| 42 |
+
- **数据预处理**:
|
| 43 |
+
- 调整尺寸到32x32
|
| 44 |
+
- 标准化 (均值=[0.5, 0.5, 0.5], 标准差=[0.5, 0.5, 0.5])
|
| 45 |
+
|
| 46 |
+
## 训练时长
|
| 47 |
+
|
| 48 |
+
- **CPU (Intel i5或同等配置)**: 约5-10分钟
|
| 49 |
+
- **CPU (Intel i7或同等配置)**: 约3-5分钟
|
| 50 |
+
- **GPU (任何配置)**: 不到1分钟
|
| 51 |
+
|
| 52 |
+
## 性能指标
|
| 53 |
+
|
| 54 |
+
在CIFAR-10测试集子集上的准确率约为**50-55%**。
|
| 55 |
+
|
| 56 |
+
## 使用方法
|
| 57 |
+
|
| 58 |
+
### 使用Transformers库
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 62 |
+
from PIL import Image
|
| 63 |
+
|
| 64 |
+
# 加载模型和处理器
|
| 65 |
+
processor = AutoImageProcessor.from_pretrained("你的用户名/simple-cnn-cifar10-lite")
|
| 66 |
+
model = AutoModelForImageClassification.from_pretrained("你的用户名/simple-cnn-cifar10-lite")
|
| 67 |
+
|
| 68 |
+
# 加载图像并进行预处理
|
| 69 |
+
image = Image.open("path_to_image.jpg")
|
| 70 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 71 |
+
|
| 72 |
+
# 预测
|
| 73 |
+
outputs = model(**inputs)
|
| 74 |
+
predicted_class_idx = outputs.logits.argmax(-1).item()
|
| 75 |
+
print(f"预测类别: {model.config.id2label[predicted_class_idx]}")
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
### 使用PyTorch
|
| 79 |
+
|
| 80 |
+
```python
|
| 81 |
+
import torch
|
| 82 |
+
from PIL import Image
|
| 83 |
+
import torchvision.transforms as transforms
|
| 84 |
+
|
| 85 |
+
# 定义模型结构
|
| 86 |
+
class SimpleConvNetLite(torch.nn.Module):
|
| 87 |
+
def __init__(self, num_classes=10):
|
| 88 |
+
super(SimpleConvNetLite, self).__init__()
|
| 89 |
+
self.conv1 = torch.nn.Conv2d(3, 16, 3, padding=1)
|
| 90 |
+
self.pool = torch.nn.MaxPool2d(2, 2)
|
| 91 |
+
self.fc1 = torch.nn.Linear(16 * 16 * 16, 64)
|
| 92 |
+
self.fc2 = torch.nn.Linear(64, num_classes)
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
x = self.pool(torch.nn.functional.relu(self.conv1(x)))
|
| 96 |
+
x = x.view(-1, 16 * 16 * 16)
|
| 97 |
+
x = torch.nn.functional.relu(self.fc1(x))
|
| 98 |
+
x = self.fc2(x)
|
| 99 |
+
return x
|
| 100 |
+
|
| 101 |
+
# 加载模型
|
| 102 |
+
model = SimpleConvNetLite()
|
| 103 |
+
model.load_state_dict(torch.load("pytorch_model.bin", map_location=torch.device('cpu')))
|
| 104 |
+
model.eval()
|
| 105 |
+
|
| 106 |
+
# 图像预处理
|
| 107 |
+
transform = transforms.Compose([
|
| 108 |
+
transforms.Resize((32, 32)),
|
| 109 |
+
transforms.ToTensor(),
|
| 110 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
| 111 |
+
])
|
| 112 |
+
|
| 113 |
+
# 类别映射
|
| 114 |
+
classes = ('飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车')
|
| 115 |
+
|
| 116 |
+
# 加载图像并预测
|
| 117 |
+
image = Image.open("path_to_image.jpg").convert('RGB')
|
| 118 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 119 |
+
with torch.no_grad():
|
| 120 |
+
outputs = model(image_tensor)
|
| 121 |
+
_, predicted = torch.max(outputs, 1)
|
| 122 |
+
print(f"预测类别: {classes[predicted.item()]}")
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## 优势和局限性
|
| 126 |
+
|
| 127 |
+
### 优势
|
| 128 |
+
|
| 129 |
+
- **快速训练**: 在CPU上可在10分钟内完成训练
|
| 130 |
+
- **轻量级**: 模型体积小,适合部署在资源受限的环境
|
| 131 |
+
- **易于理解**: 简单的架构设计,适合学习和教学目的
|
| 132 |
+
|
| 133 |
+
### 局限性
|
| 134 |
+
|
| 135 |
+
- **准确率较低**: 相比完整模型,精简版准确率约为50-55%
|
| 136 |
+
- **特征提取能力有限**: 只有一个卷积层,特征提取能力有限
|
| 137 |
+
- **仅用于演示**: 主要用于快速演示和教学,不适合生产环境
|
| 138 |
+
|
| 139 |
+
## 项目链接
|
| 140 |
+
|
| 141 |
+
- 项目代码: [GitHub仓库链接]
|
| 142 |
+
- Hugging Face Space演示: [你的用户名/simple-cnn-cifar10-lite-demo]
|
| 143 |
+
|
| 144 |
+
## 许可证
|
| 145 |
+
|
| 146 |
+
MIT
|
| 147 |
+
|
| 148 |
+
---
|
| 149 |
+
|
| 150 |
+
*本模型由[您的名字]创建,用于Hugging Face学习和演示目的。*
|
features.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"features": {
|
| 3 |
+
"pixel_values": {
|
| 4 |
+
"feature_extractor_type": "AutoImageProcessor",
|
| 5 |
+
"_type": "Value",
|
| 6 |
+
"dtype": "float32",
|
| 7 |
+
"shape": [
|
| 8 |
+
3,
|
| 9 |
+
32,
|
| 10 |
+
32
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
"labels": {
|
| 14 |
+
"_type": "ClassLabel",
|
| 15 |
+
"names": [
|
| 16 |
+
"飞机",
|
| 17 |
+
"汽车",
|
| 18 |
+
"鸟",
|
| 19 |
+
"猫",
|
| 20 |
+
"鹿",
|
| 21 |
+
"狗",
|
| 22 |
+
"青蛙",
|
| 23 |
+
"马",
|
| 24 |
+
"船",
|
| 25 |
+
"卡车"
|
| 26 |
+
],
|
| 27 |
+
"names_file": null,
|
| 28 |
+
"id": null
|
| 29 |
+
}
|
| 30 |
+
}
|
| 31 |
+
}
|
model-card.md
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- zh
|
| 4 |
+
- en
|
| 5 |
+
license: mit
|
| 6 |
+
library_name: pytorch
|
| 7 |
+
tags:
|
| 8 |
+
- image-classification
|
| 9 |
+
- cifar10
|
| 10 |
+
- cnn
|
| 11 |
+
- lite-model
|
| 12 |
+
- educational
|
| 13 |
+
datasets:
|
| 14 |
+
- cifar10
|
| 15 |
+
metrics:
|
| 16 |
+
- accuracy
|
| 17 |
+
model-index:
|
| 18 |
+
- name: SimpleConvNetLite
|
| 19 |
+
results:
|
| 20 |
+
- task:
|
| 21 |
+
type: image-classification
|
| 22 |
+
name: Image Classification
|
| 23 |
+
dataset:
|
| 24 |
+
name: CIFAR-10 (20% subset)
|
| 25 |
+
type: cifar10
|
| 26 |
+
metrics:
|
| 27 |
+
- name: Accuracy
|
| 28 |
+
type: accuracy
|
| 29 |
+
value: 0.52
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
# SimpleConvNetLite模型卡
|
| 33 |
+
|
| 34 |
+
这是一个轻量级图像分类模型,专为快速训练和部署而设计,可以在CPU上10分钟内完成训练。
|
| 35 |
+
|
| 36 |
+
[完整模型卡请见README.md]
|