File size: 30,897 Bytes
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d968d0
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef5652
 
 
 
 
 
 
43e08ee
 
 
 
aef5652
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3cebd
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3cebd
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c3cebd
43e08ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef5652
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import copy
from collections.abc import Callable
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, HybridCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torchdynamo_compiling,
    logging,
    replace_return_docstrings,
)
from transformers.utils.deprecation import deprecate_kwarg
from transformers import AutoModel, AutoModelForCausalLM

from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast, Gemma3PreTrainedModel, Gemma3MultiModalProjector

from transformers import AutoConfig, AutoModelForCausalLM

from .configuration_gemma3mm import Gemma3MMConfig
from .processing_gemma3mm import InputMode
from .speech_conformer_encoder import ConformerEncoder

logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "Gemma3MMConfig"

@dataclass
class Gemma3MMCausalLMOutputWithPast(Gemma3CausalLMOutputWithPast):  # ← 부모 클래스 변경
    """
    Multimodal version of `Gemma3CausalLMOutputWithPast`.
    Adds audio-specific hidden states.

    Args:
        audio_hidden_states (`torch.FloatTensor`, *optional*):
            A `torch.FloatTensor` of size `(batch_size, sequence_length, hidden_size)`.
            Audio hidden states produced by the audio encoder.
    """
    audio_hidden_states: Optional[torch.FloatTensor] = None


GEMMA3_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`Gemma3Config`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""



GEMMA3_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.

            Two formats are allowed:
            - a [`~cache_utils.Cache`] instance, see our
            [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
            cache format.

            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
            legacy cache format will be returned.

            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
            of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
            the complete sequence length.
"""

@add_start_docstrings(
    "The bare Gemma3 Model outputting raw hidden-states without any specific head on top.",
    GEMMA3_START_DOCSTRING,
)
class Gemma3MMPreTrainedModel(Gemma3PreTrainedModel):
    config_class = Gemma3MMConfig

@add_start_docstrings(
    """The GEMMA3 model which consists of a vision backbone and a language model.""",
    GEMMA3_START_DOCSTRING,
)
class Gemma3MMForConditionalGeneration(Gemma3MMPreTrainedModel, GenerationMixin):
    def __init__(self, config: Gemma3MMConfig):
        super().__init__(config)
        self.vision_tower = AutoModel.from_config(config=config.vision_config)
        audio_config = config.audio_config.to_diff_dict()
        for item in ['transformers_version', 'model_type', 'torch_dtype']:
            if item in audio_config:
                audio_config.pop(item)
        self.audio_tower = ConformerEncoder(**audio_config)
        self.audio_tower.post_init({})
        self.audio_projector = nn.Sequential(
            nn.Linear(in_features=config.audio_config.attention_dim, out_features=config.text_config.hidden_size, bias=True),
            nn.GELU(approximate='none'),
            nn.Linear(in_features=config.text_config.hidden_size, out_features=config.text_config.hidden_size, bias=True)
        ).to(dtype=self.dtype)

        self.multi_modal_projector = Gemma3MultiModalProjector(config)
        self.vocab_size = config.text_config.vocab_size

        language_model = AutoModelForCausalLM.from_config(config=config.text_config)

        if language_model._tied_weights_keys is not None:
            self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys]
        self.language_model = language_model

        self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
        
        # LoRA 어댑터 설정 추가
        if hasattr(config, "speech_lora") and config.speech_lora is not None:
            from peft import LoraConfig, get_peft_model
            import warnings
            
            speech_lora_config = LoraConfig(
                r=config.speech_lora['r'],
                lora_alpha=config.speech_lora['lora_alpha'],
                target_modules=config.speech_lora['layer'],
                use_rslora=config.speech_lora['use_rslora'],
                lora_dropout=config.speech_lora['dp'],
                task_type="CAUSAL_LM",
            )
            self.language_model.model = get_peft_model(self.language_model.model, speech_lora_config, adapter_name="speech")
        
        self.post_init()
        
    def set_lora_adapter(self, adapter_name) -> None:
        from peft.tuners.lora.layer import LoraLayer
        for module in self.modules():
            if isinstance(module, LoraLayer):
                if module.merged:
                    warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
                    module.unmerge()
                module.set_adapter(adapter_name)
                module._disable_adapters = False

    def unset_lora_adapter(self) -> None:
        # Ref: peft/tuners/tuners_utils.py - enable_adapters()
        # Ref: peft/tuners/lora/layer.py
        from peft.tuners.lora.layer import LoraLayer
        for module in self.modules():
            if isinstance(module, LoraLayer):
                # disable grads on all adapter layers
                # TODO weijian: may use enable_adapters() instead
                for layer_name in module.adapter_layer_names:
                    layer = getattr(module, layer_name)
                    layer.requires_grad_(False)
                module._disable_adapters = True

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    def get_decoder(self):
        return self.language_model.get_decoder()

    def _update_causal_mask(
        self,
        attention_mask,
        token_type_ids,
        past_key_values,
        cache_position,
        input_tensor,
        is_training: bool = False,
    ):
        if self.config.text_config._attn_implementation == "flash_attention_2":
            return attention_mask

        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted
            # form and requires no inversion or slicing.
            return attention_mask

        using_static_cache = isinstance(past_key_values, StaticCache)
        min_dtype = torch.finfo(self.dtype).min
        inputs_lead_dim, sequence_length = input_tensor.shape[:2]
        if using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        elif isinstance(past_key_values, HybridCache):
            target_length = past_key_values.get_max_cache_shape()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else cache_position[0] + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            return attention_mask

        causal_mask = torch.full(
            (sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device
        )

        # Causal diagonal mask only if training, otherwise attend to the whole prefix. Training-specific attn for prefix is handled below
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)

        causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1)

        # Apply bidirectional mask on images if token type ids are provided
        if token_type_ids is not None and sequence_length != 1:
            token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2)
            token_type_mask[token_type_ids == 0] = False  # if text token do not change anything
            token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool)
            causal_mask = causal_mask.clone()
            causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill(
                token_type_mask, 0.0
            )

        if attention_mask is not None:
            causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
            mask_length = attention_mask.shape[-1]

            # Then apply padding mask (will mask pad tokens)
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                padding_mask, min_dtype
            )

        return causal_mask

    def get_image_features(self, pixel_values: torch.Tensor):
        """
        Projects the last hidden state from the vision model into language model space.

        Args:
            pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
               The tensors corresponding to the input images.
        Returns:
            image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
        """
        vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state
        image_features = self.multi_modal_projector(vision_outputs)
        return image_features
        
    def get_audio_features(self, input_audio_embeds: torch.FloatTensor, audio_attention_mask: torch.FloatTensor, audio_embed_sizes: torch.FloatTensor):
        """
        Projects the last hidden state from the audio model into language model space.
        
        Args:
            audio_inputs (`torch.FloatTensor]` of shape `(batch_size, sequence_length, feature_dim)`)
                The tensors corresponding to the input audio features.
                
        Returns:
            audio_features (`torch.Tensor`): Audio feature tensor of shape `(batch_size, audio_length, embed_dim)`).
        """
        audio_features, masks = self.audio_tower(input_audio_embeds, audio_attention_mask)
        audio_outputs = self.audio_projector(audio_features)
        return audio_outputs

    @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
    @add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Gemma3MMCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        input_audio_embeds: torch.FloatTensor = None,
        audio_embed_sizes: torch.FloatTensor = None,
        audio_attention_mask: torch.FloatTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        input_modes: torch.LongTensor = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **lm_kwargs,
    ) -> Union[Tuple, Gemma3MMCausalLMOutputWithPast]:
        r"""
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.

            logits_to_keep (`int` or `torch.Tensor`, *optional*):
                If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
                `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
                token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
                If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
                This is useful when using packed tensor format (single dimension for batch and sequence length).

        Returns:

        Example:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, Gemma3MMForConditionalGeneration

        >>> model = Gemma3MMForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf")
        >>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf")

        >>> prompt = "answer en Where is the cow standing?"
        >>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, text=prompt,  return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(**inputs, max_length=30)
        >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "answer en Where is the cow standing?\nbeach"
        ```"""

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if isinstance(input_modes, torch.Tensor):
            # len(input_mode) == num_beams in beam search, and all elements of input_mode should have the same value
            input_modes = input_modes.unique()
            if len(input_modes) != 1:
                raise ValueError("Elements of input_modes should have the same value")

        input_mode = InputMode(input_modes.item())

        if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]:
            self.unset_lora_adapter()
            #self.set_lora_adapter('vision')
            #audio_projection_mode = 'vision'
        elif input_mode == InputMode.SPEECH:
            self.set_lora_adapter('speech')
            #audio_projection_mode = 'speech'
        elif input_mode == InputMode.LANGUAGE:
            self.unset_lora_adapter()
            #audio_projection_mode = 'speech'
        else:
            raise ValueError(f"Invalid input_mode: {input_mode}")

        is_training = token_type_ids is not None and labels is not None

        # Replace image id woth PAD if the image token if OOV, to avoid index-errors
        if input_ids is not None and self.config.image_token_index >= self.vocab_size or self.config.audio_token_index >= self.vocab_size:
            special_image_mask = input_ids == self.config.image_token_index
            special_audio_mask = input_ids == self.config.audio_token_index
            llm_input_ids = input_ids.clone()
            llm_input_ids[special_image_mask] = 0
            llm_input_ids[special_audio_mask] = 0
        else:
            llm_input_ids = input_ids

        if inputs_embeds is None:
            inputs_embeds = self.get_input_embeddings()(llm_input_ids)

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0) + 1  # Gemma3 positions are 1-indexed

        # Merge text and images
        if pixel_values is not None:
            image_features = self.get_image_features(pixel_values)

            if input_ids is None:
                special_image_mask = inputs_embeds == self.get_input_embeddings()(
                    torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
                )
            else:
                special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
                special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)

            if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
                image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
                raise ValueError(
                    f"Number of images does not match number of special image tokens in the input text. "
                    f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
                    "tokens from image embeddings."
                )
            image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

        # Merge text and audios
        if input_audio_embeds is not None:
            audio_features = self.get_audio_features(input_audio_embeds, audio_attention_mask, audio_embed_sizes)
            if input_ids is None:
                special_audio_mask = inputs_embeds == self.get_input_embeddings()(
                    torch.tensor(self.config.audio_token_index, dtype=torch.long, device=inputs_embeds.device)
                )
            else:
                special_audio_mask = (input_ids == self.config.audio_token_index).unsqueeze(-1)
                special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
                
            masked_audio_features = []
            for i, size in enumerate(audio_embed_sizes):
                masked_audio_features.append(audio_features[i, :size, :])
            masked_audio_features = torch.cat(masked_audio_features, dim=0)

            if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != masked_audio_features.numel():
                audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0]
                masked_audio_size = audio_embed_sizes.sum()[0]
                raise ValueError(
                    f"Number of images does not match number of special image tokens in the input text. "
                    f"Got {audio_tokens_in_text} image tokens in the text but {masked_audio_size} "
                    "tokens from image embeddings."
                )
            masked_audio_features = masked_audio_features.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, masked_audio_features)

        # mask out pad-token-ids in labels for BC
        if labels is not None and self.pad_token_id in labels:
            logger.warning_once(
                "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
                "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
            )
            labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)

        causal_mask = self._update_causal_mask(
            attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
        )
        outputs = self.language_model(
            attention_mask=causal_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            logits_to_keep=logits_to_keep,
            **lm_kwargs,
        )

        logits = outputs.logits
        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            shift_logits = logits[..., :-1, :]
            shift_labels = labels[..., 1:]
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
                shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
                shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
            else:
                shift_logits = shift_logits.contiguous()
                shift_labels = shift_labels.contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()

            flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
            flat_labels = shift_labels.view(-1).to(shift_logits.device)
            loss = loss_fct(flat_logits, flat_labels)
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return Gemma3MMCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            image_hidden_states=image_features if pixel_values is not None else None,
            audio_hidden_states=audio_features if input_audio_embeds is not None else None,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        input_modes=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        pixel_values=None,
        input_audio_embeds=None,
        audio_embed_sizes=None,
        audio_attention_mask=None,
        attention_mask=None,
        token_type_ids=None,
        use_cache=True,
        logits_to_keep=None,
        labels=None,
        **kwargs,
    ):
        # Overwritten -- custom `position_ids` and `pixel_values` handling
        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            input_modes=input_modes,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            cache_position=cache_position,
            use_cache=use_cache,
            logits_to_keep=logits_to_keep,
            token_type_ids=token_type_ids,
            **kwargs,
        )

        # position_ids in Gemma3 are 1-indexed
        if model_inputs.get("position_ids") is not None:
            model_inputs["position_ids"] += 1
        # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
        # Otherwise we need pixel values to be passed to model. NOTE: use_cache=False needs pixel_values always
        if cache_position[0] == 0:
            model_inputs["pixel_values"] = pixel_values
            model_inputs["input_audio_embeds"] = input_audio_embeds
            model_inputs["audio_embed_sizes"] = audio_embed_sizes
            model_inputs["audio_attention_mask"] = audio_attention_mask
        model_inputs["input_modes"] = input_modes
        is_training = token_type_ids is not None and labels is not None
        if cache_position[0] == 0 and isinstance(past_key_values, HybridCache):
            input_tensor = inputs_embeds if inputs_embeds is not None else input_ids
            causal_mask = self._update_causal_mask(
                attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training
            )
            model_inputs["attention_mask"] = causal_mask

        return model_inputs

    def tie_weights(self):
        return self.language_model.tie_weights()