Upload evaluate_speech.py
Browse files- examples/evaluate_speech.py +345 -82
examples/evaluate_speech.py
CHANGED
@@ -25,7 +25,7 @@ normalizer = {
|
|
25 |
|
26 |
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋
|
27 |
model_id = "junnei/gemma-3-4b-it-speech"
|
28 |
-
revision = "v1.0"
|
29 |
|
30 |
model = AutoModel.from_pretrained(
|
31 |
model_id, device_map="auto", revision = revision, trust_remote_code=True
|
@@ -45,76 +45,282 @@ INSTRUCTION = {
|
|
45 |
"asr": "Transcribe the audio clip into text.",
|
46 |
}
|
47 |
|
48 |
-
class
|
49 |
-
def __init__(self, processor,
|
50 |
-
|
51 |
-
self.
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
trust_remote_code=True
|
56 |
-
)
|
57 |
-
|
58 |
-
original_size = len(self.data)
|
59 |
-
self.data = self.data.cast_column("audio", Audio(decode=False))
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def identify_corrupted_files(example):
|
62 |
try:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
return True
|
68 |
except Exception:
|
69 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
self.ast = ast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
|
83 |
-
|
84 |
self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
|
85 |
-
|
86 |
def __len__(self):
|
87 |
return len(self.data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
def __getitem__(self, idx):
|
90 |
data = self.data[idx]
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
[
|
|
|
|
|
97 |
)
|
98 |
-
inputs = self.processor(text=prompt, audio=[data["audio"]["array"]], add_special_tokens=False, return_tensors='pt')
|
99 |
-
sentence = data['sentence'].replace('"', '')
|
100 |
-
answer = f"{data['translation'] if self.ast else sentence}"
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
def pad_sequence(sequences, padding_side='
|
118 |
"""
|
119 |
Pad a list of sequences to the same length.
|
120 |
sequences: list of tensors in [seq_len, *] shape
|
@@ -164,7 +370,6 @@ def covost_collate_fn(batch):
|
|
164 |
audio_embed_sizes_list = []
|
165 |
audio_attention_mask_list = []
|
166 |
input_modes_list = []
|
167 |
-
sentence_list = []
|
168 |
answer_list = []
|
169 |
for inputs in batch:
|
170 |
input_ids_list.append(inputs['input_ids'][0])
|
@@ -174,7 +379,6 @@ def covost_collate_fn(batch):
|
|
174 |
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
175 |
)
|
176 |
input_modes_list.append(inputs['input_modes'])
|
177 |
-
sentence_list.append(inputs['sentence'])
|
178 |
answer_list.append(inputs['answer'])
|
179 |
|
180 |
try:
|
@@ -202,14 +406,13 @@ def covost_collate_fn(batch):
|
|
202 |
'audio_embed_sizes': audio_embed_sizes,
|
203 |
'audio_attention_mask': audio_attention_mask,
|
204 |
'input_modes': input_modes,
|
205 |
-
'sentence': sentence_list,
|
206 |
'answer': answer_list,
|
207 |
}
|
208 |
)
|
209 |
|
210 |
-
def save_results(results, task, source_lang, target_lang=None, sample_idx=None):
|
211 |
"""๊ฒฐ๊ณผ๋ฅผ JSON ํ์ผ๋ก ์ ์ฅ"""
|
212 |
-
filename = f"{task}_{source_lang}"
|
213 |
if target_lang:
|
214 |
filename += f"_to_{target_lang}"
|
215 |
if sample_idx is not None:
|
@@ -244,7 +447,6 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
244 |
|
245 |
# ๋ฐฐ์น ๋จ์๋ก ์ฒ๋ฆฌ
|
246 |
for batch_idx, batch in enumerate(tqdm(dataloader)):
|
247 |
-
batch_sentences = batch.pop("sentence")
|
248 |
batch_references = batch.pop("answer")
|
249 |
|
250 |
# GPU๋ก ์ด๋
|
@@ -253,7 +455,10 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
253 |
|
254 |
# ๋ฐฐ์น ์ถ๋ก
|
255 |
with torch.inference_mode():
|
256 |
-
generate_ids = model.generate(**batch,
|
|
|
|
|
|
|
257 |
|
258 |
input_lengths = batch['input_ids'].shape[1]
|
259 |
generate_ids = generate_ids[:, input_lengths:]
|
@@ -264,11 +469,10 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
264 |
)
|
265 |
|
266 |
# ๊ฒฐ๊ณผ ์ ์ฅ
|
267 |
-
for i, (
|
268 |
idx = batch_idx * batch_size + i
|
269 |
sample_result = {
|
270 |
"id": idx,
|
271 |
-
"sentence": sentence,
|
272 |
"reference": reference,
|
273 |
"prediction": prediction
|
274 |
}
|
@@ -329,7 +533,7 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
329 |
"num_samples": len(temp_results),
|
330 |
"sample_results": temp_results
|
331 |
}
|
332 |
-
save_results(partial_results, task_type, source_lang, target_lang)
|
333 |
|
334 |
for item in sample_results:
|
335 |
ref = eval_normalizer(item["reference"])
|
@@ -351,6 +555,7 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
351 |
avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
|
352 |
|
353 |
results = {
|
|
|
354 |
"task": task_type,
|
355 |
"source_lang": source_lang,
|
356 |
"target_lang": target_lang,
|
@@ -364,60 +569,118 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
364 |
}
|
365 |
|
366 |
# ์ต์ข
๊ฒฐ๊ณผ ์ ์ฅ
|
367 |
-
save_results(results, task_type, source_lang, target_lang)
|
368 |
return results
|
369 |
|
370 |
# ๋ฉ์ธ ์คํ ์ฝ๋
|
371 |
if __name__ == "__main__":
|
372 |
# ํ๊ฐํ ์ธ์ด ๋ชฉ๋ก (์์ค ์ธ์ด)
|
373 |
source_languages = [
|
374 |
-
("en_us", "English"), # ์์ด (๋ฏธ๊ตญ)
|
375 |
#("ko_kr", "Korean"),
|
|
|
376 |
]
|
377 |
|
378 |
# ๋ฒ์ญ ๋์ ์ธ์ด ๋ชฉ๋ก (์ฝ๋, ์ด๋ฆ)
|
379 |
target_languages = [
|
380 |
-
("ko_kr", "Korean"),
|
381 |
#("en_us", "English"),
|
|
|
382 |
]
|
383 |
|
384 |
data_dir = {
|
385 |
-
"en_us" : "/workspace/CommonVoice/EN",
|
386 |
#"ko_kr" : "/workspace/CommonVoice/ko",
|
|
|
387 |
}
|
388 |
|
389 |
# ์ํ ์ ์ค์ (-1์ ์ ์ฒด ๋ฐ์ดํฐ์
์ฌ์ฉ)
|
390 |
num_samples = -1
|
391 |
-
batch_size =
|
392 |
|
393 |
# ๋ชจ๋ ์์ค ์ธ์ด์ ๋ํด ASR ํ๊ฐ
|
394 |
for source_lang, target_lang in zip(source_languages, target_languages):
|
395 |
print(f"\n===== {source_lang[0]} ASR ํ๊ฐ ์์ =====")
|
396 |
|
397 |
# ๋ฐ์ดํฐ์
๋ก๋
|
398 |
-
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
|
|
|
|
|
|
|
|
|
|
|
408 |
try:
|
409 |
print(f"\n===== {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ํ๊ฐ ์์ =====")
|
410 |
-
|
411 |
-
|
412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
421 |
|
422 |
except Exception as e:
|
423 |
error_info = {
|
|
|
25 |
|
26 |
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋
|
27 |
model_id = "junnei/gemma-3-4b-it-speech"
|
28 |
+
revision = "main" #"v1.0"
|
29 |
|
30 |
model = AutoModel.from_pretrained(
|
31 |
model_id, device_map="auto", revision = revision, trust_remote_code=True
|
|
|
45 |
"asr": "Transcribe the audio clip into text.",
|
46 |
}
|
47 |
|
48 |
+
class BaseAudioDataset(Dataset):
|
49 |
+
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
50 |
+
self.processor = processor
|
51 |
+
self.training = "train" in split
|
52 |
+
self.debug = debug
|
53 |
+
self.sampling_rate = sampling_rate
|
54 |
+
self.name = ""
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
def set_dataset_name(self, name):
|
57 |
+
self.name = name
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
|
61 |
+
original_size = len(data)
|
62 |
+
|
63 |
+
data = data.cast_column(audio_field, Audio(decode=False))
|
64 |
+
|
65 |
def identify_corrupted_files(example):
|
66 |
try:
|
67 |
+
sf.read(example[audio_field]["path"])
|
68 |
+
|
69 |
+
for field in text_fields:
|
70 |
+
if example[field].replace('"', '') == "":
|
71 |
+
return False
|
72 |
return True
|
73 |
except Exception:
|
74 |
return False
|
75 |
+
|
76 |
+
data = data.filter(identify_corrupted_files, num_proc=16)
|
77 |
+
validated_size = len(data)
|
78 |
+
|
79 |
+
# ์ค๋์ค ๋์ฝ๋ฉ
|
80 |
+
data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
|
81 |
+
|
82 |
+
if debug:
|
83 |
+
print(f"๋ฐ์ดํฐ์
: {dataset_name}")
|
84 |
+
print(f"์๋ณธ ๋ฐ์ดํฐ ๊ฐ์: {original_size}")
|
85 |
+
print(f"ํํฐ๋ง ํ ๋ฐ์ดํฐ ๊ฐ์: {validated_size}")
|
86 |
+
print(f"ํํฐ๋ง ๋น์จ: {validated_size/original_size:.2%}")
|
87 |
+
|
88 |
+
return data
|
89 |
|
90 |
+
@staticmethod
|
91 |
+
def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
|
92 |
+
original_size = len(data)
|
93 |
+
|
94 |
+
def filter_audio_by_length(example):
|
95 |
+
try:
|
96 |
+
audio = example[audio_field]['array']
|
97 |
+
channel = 1
|
98 |
+
if hasattr(audio, 'ndim') and audio.ndim > 1:
|
99 |
+
channel = audio.ndim
|
100 |
+
audio = audio.squeeze()
|
101 |
+
audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
|
102 |
+
return min_sec <= audio_length <= max_sec
|
103 |
+
except Exception as e:
|
104 |
+
if debug:
|
105 |
+
print(f"์ค๋ฅ ๋ฐ์: {str(e)[:100]}... - ์ํ ์ ์ธ๋จ")
|
106 |
+
return False
|
107 |
+
|
108 |
+
data = data.filter(filter_audio_by_length, num_proc=16)
|
109 |
+
filtered_size = len(data)
|
110 |
+
|
111 |
+
if debug:
|
112 |
+
print(f"๊ธธ์ด ํํฐ๋ง ์ ๋ฐ์ดํฐ ๊ฐ์: {original_size}")
|
113 |
+
print(f"๊ธธ์ด ํํฐ๋ง ํ ๋ฐ์ดํฐ ๊ฐ์: {filtered_size}")
|
114 |
+
print(f"ํํฐ๋ง ๋น์จ: {filtered_size/original_size:.2%}")
|
115 |
+
|
116 |
+
return data
|
117 |
|
118 |
+
def prepare_model_inputs(self, audio_array, instruction, answer_text):
|
119 |
+
user_message = {
|
120 |
+
'role': 'user',
|
121 |
+
'content': '<start_of_audio>' + instruction,
|
122 |
+
}
|
123 |
+
prompt = self.processor.tokenizer.apply_chat_template(
|
124 |
+
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
|
125 |
+
)
|
126 |
+
|
127 |
+
inputs = self.processor(
|
128 |
+
text=prompt,
|
129 |
+
audio=[audio_array],
|
130 |
+
add_special_tokens=False,
|
131 |
+
return_tensors='pt'
|
132 |
+
)
|
133 |
+
|
134 |
+
input_ids = inputs.input_ids
|
135 |
+
token_type_ids = inputs.token_type_ids
|
136 |
+
|
137 |
+
return {
|
138 |
+
'input_ids': input_ids,
|
139 |
+
'token_type_ids': token_type_ids,
|
140 |
+
'input_audio_embeds': inputs.input_audio_embeds,
|
141 |
+
'audio_embed_sizes': inputs.audio_embed_sizes,
|
142 |
+
'input_modes': inputs.input_modes,
|
143 |
+
'answer': answer_text,
|
144 |
+
}
|
145 |
+
|
146 |
+
# CoVoST2 Dataset Class
|
147 |
+
class CoVoSTDataset(BaseAudioDataset):
|
148 |
+
def __init__(self, processor, data_dir, split, ast=False,
|
149 |
+
lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
|
150 |
+
super().__init__(processor, split, sampling_rate, debug)
|
151 |
+
|
152 |
+
self.set_dataset_name("CoVoST")
|
153 |
+
|
154 |
self.ast = ast
|
155 |
+
self.lang = lang[0]
|
156 |
+
|
157 |
+
self.data = load_dataset("junnei/covost2",
|
158 |
+
lang[0],
|
159 |
+
data_dir=data_dir,
|
160 |
+
split=split,
|
161 |
+
trust_remote_code=True
|
162 |
+
)
|
163 |
|
164 |
+
text_fields = ["sentence", "translation"] if ast else ["sentence"]
|
165 |
+
self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
|
166 |
+
|
167 |
+
# (Optional) Audio length Filtering
|
168 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
169 |
|
170 |
+
# Instruction Setting
|
171 |
self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
|
172 |
+
|
173 |
def __len__(self):
|
174 |
return len(self.data)
|
175 |
+
|
176 |
+
def __getitem__(self, idx):
|
177 |
+
data = self.data[idx]
|
178 |
+
|
179 |
+
if self.ast:
|
180 |
+
answer_text = data["translation"]
|
181 |
+
else:
|
182 |
+
answer_text = data["sentence"].replace('"', '')
|
183 |
+
|
184 |
+
return self.prepare_model_inputs(
|
185 |
+
data["audio"]["array"],
|
186 |
+
self.instruction,
|
187 |
+
answer_text
|
188 |
+
)
|
189 |
|
190 |
+
|
191 |
+
# Libri Speech Dataset Class
|
192 |
+
class LibriSpeechDataset(BaseAudioDataset):
|
193 |
+
def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
|
194 |
+
super().__init__(processor, split, sampling_rate, debug)
|
195 |
+
|
196 |
+
self.set_dataset_name(f"LibriSpeech_{subset}")
|
197 |
+
|
198 |
+
# only ASR
|
199 |
+
self.ast = False
|
200 |
+
self.lang = "en"
|
201 |
+
|
202 |
+
if split == "train":
|
203 |
+
split = "train.360"
|
204 |
+
|
205 |
+
# load dataset
|
206 |
+
self.data = load_dataset("fixie-ai/librispeech_asr",
|
207 |
+
subset,
|
208 |
+
split=split,
|
209 |
+
trust_remote_code=True
|
210 |
+
)
|
211 |
+
|
212 |
+
# (Optional) Audio length Filtering
|
213 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
214 |
+
|
215 |
+
# Instruction Setting
|
216 |
+
self.instruction = INSTRUCTION["asr"]
|
217 |
+
|
218 |
+
def __len__(self):
|
219 |
+
return len(self.data)
|
220 |
+
|
221 |
def __getitem__(self, idx):
|
222 |
data = self.data[idx]
|
223 |
+
|
224 |
+
# Libri Speech is only for ASR
|
225 |
+
answer_text = data["text"].replace('"', '')
|
226 |
+
|
227 |
+
return self.prepare_model_inputs(
|
228 |
+
data["audio"]["array"],
|
229 |
+
self.instruction,
|
230 |
+
answer_text
|
231 |
)
|
|
|
|
|
|
|
232 |
|
233 |
+
# Fleurs Dataset Class
|
234 |
+
class FleursDataset(BaseAudioDataset):
|
235 |
+
def __init__(self, processor, split, source_lang, target_lang=None,
|
236 |
+
mode="asr", sampling_rate=16000, debug=False):
|
237 |
+
super().__init__(processor, split, sampling_rate, debug)
|
238 |
+
|
239 |
+
self.set_dataset_name("Fleurs")
|
240 |
+
|
241 |
+
# Mode Setting (ASR or AST)
|
242 |
+
if mode not in ["asr", "ast"]:
|
243 |
+
raise ValueError("mode must be 'asr' or 'ast'.")
|
244 |
+
|
245 |
+
self.mode = mode
|
246 |
+
self.ast = (mode == "ast")
|
247 |
+
self.source_lang = source_lang
|
248 |
+
|
249 |
+
# Language name mapping (expand if needed)
|
250 |
+
self.lang_names = {
|
251 |
+
'en_us': 'English', 'ko_kr': 'Korean'
|
252 |
}
|
253 |
+
|
254 |
+
# load dataset - source language dataset
|
255 |
+
self.data = load_dataset("google/fleurs",
|
256 |
+
source_lang,
|
257 |
+
split=split,
|
258 |
+
trust_remote_code=True
|
259 |
+
)
|
260 |
+
|
261 |
+
# (Optional) Audio length Filtering
|
262 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
263 |
+
|
264 |
+
# When AST mode, load target language dataset.
|
265 |
+
if self.ast:
|
266 |
+
if target_lang is None:
|
267 |
+
raise ValueError("AST mode requires target_lang.")
|
268 |
+
|
269 |
+
self.target_lang = target_lang
|
270 |
+
self.lang = f"{source_lang}_{target_lang}"
|
271 |
+
|
272 |
+
# load dataset - target language dataset (for translation)
|
273 |
+
target_data = load_dataset("google/fleurs",
|
274 |
+
target_lang,
|
275 |
+
split=split,
|
276 |
+
trust_remote_code=True
|
277 |
+
)
|
278 |
+
|
279 |
+
source_dict = {item['id']: item for item in self.data}
|
280 |
+
target_dict = {item['id']: item for item in target_data}
|
281 |
+
|
282 |
+
# only Common ID, add translation fields
|
283 |
+
common_ids = set(source_dict.keys()) & set(target_dict.keys())
|
284 |
+
print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
|
285 |
+
self.data = [
|
286 |
+
{**source_dict[id], 'translation': target_dict[id]['transcription']}
|
287 |
+
for id in common_ids
|
288 |
+
]
|
289 |
+
|
290 |
+
# Instruction Setting - use target language name
|
291 |
+
target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
|
292 |
+
self.instruction = INSTRUCTION["ast"].format(target_lang_name)
|
293 |
+
else:
|
294 |
+
# ASR mode
|
295 |
+
self.lang = source_lang
|
296 |
+
self.instruction = INSTRUCTION["asr"]
|
297 |
+
|
298 |
+
if self.debug:
|
299 |
+
print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
|
300 |
+
print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
|
301 |
+
if self.ast:
|
302 |
+
print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
|
303 |
+
print(f"dataset size: {len(self.data)}")
|
304 |
+
|
305 |
+
def __len__(self):
|
306 |
+
return len(self.data)
|
307 |
+
|
308 |
+
def __getitem__(self, idx):
|
309 |
+
data = self.data[idx]
|
310 |
+
audio_array = data["audio"]["array"]
|
311 |
|
312 |
+
if self.ast:
|
313 |
+
answer_text = data["translation"]
|
314 |
+
else:
|
315 |
+
answer_text = data["transcription"]
|
316 |
+
|
317 |
+
return self.prepare_model_inputs(
|
318 |
+
audio_array,
|
319 |
+
self.instruction,
|
320 |
+
answer_text
|
321 |
+
)
|
322 |
|
323 |
+
def pad_sequence(sequences, padding_side='left', padding_value=0):
|
324 |
"""
|
325 |
Pad a list of sequences to the same length.
|
326 |
sequences: list of tensors in [seq_len, *] shape
|
|
|
370 |
audio_embed_sizes_list = []
|
371 |
audio_attention_mask_list = []
|
372 |
input_modes_list = []
|
|
|
373 |
answer_list = []
|
374 |
for inputs in batch:
|
375 |
input_ids_list.append(inputs['input_ids'][0])
|
|
|
379 |
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
380 |
)
|
381 |
input_modes_list.append(inputs['input_modes'])
|
|
|
382 |
answer_list.append(inputs['answer'])
|
383 |
|
384 |
try:
|
|
|
406 |
'audio_embed_sizes': audio_embed_sizes,
|
407 |
'audio_attention_mask': audio_attention_mask,
|
408 |
'input_modes': input_modes,
|
|
|
409 |
'answer': answer_list,
|
410 |
}
|
411 |
)
|
412 |
|
413 |
+
def save_results(results, dataset_name, task, source_lang, target_lang=None, sample_idx=None):
|
414 |
"""๊ฒฐ๊ณผ๋ฅผ JSON ํ์ผ๋ก ์ ์ฅ"""
|
415 |
+
filename = f"{task}_{dataset_name}_{source_lang}"
|
416 |
if target_lang:
|
417 |
filename += f"_to_{target_lang}"
|
418 |
if sample_idx is not None:
|
|
|
447 |
|
448 |
# ๋ฐฐ์น ๋จ์๋ก ์ฒ๋ฆฌ
|
449 |
for batch_idx, batch in enumerate(tqdm(dataloader)):
|
|
|
450 |
batch_references = batch.pop("answer")
|
451 |
|
452 |
# GPU๋ก ์ด๋
|
|
|
455 |
|
456 |
# ๋ฐฐ์น ์ถ๋ก
|
457 |
with torch.inference_mode():
|
458 |
+
generate_ids = model.generate(**batch,
|
459 |
+
max_new_tokens=256,
|
460 |
+
#temperature = 1.0, top_p = 0.95, top_k = 64, do_sample=True
|
461 |
+
)
|
462 |
|
463 |
input_lengths = batch['input_ids'].shape[1]
|
464 |
generate_ids = generate_ids[:, input_lengths:]
|
|
|
469 |
)
|
470 |
|
471 |
# ๊ฒฐ๊ณผ ์ ์ฅ
|
472 |
+
for i, (reference, prediction) in enumerate(zip(batch_references, batch_predictions)):
|
473 |
idx = batch_idx * batch_size + i
|
474 |
sample_result = {
|
475 |
"id": idx,
|
|
|
476 |
"reference": reference,
|
477 |
"prediction": prediction
|
478 |
}
|
|
|
533 |
"num_samples": len(temp_results),
|
534 |
"sample_results": temp_results
|
535 |
}
|
536 |
+
save_results(partial_results, dataset.name, task_type, source_lang, target_lang)
|
537 |
|
538 |
for item in sample_results:
|
539 |
ref = eval_normalizer(item["reference"])
|
|
|
555 |
avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
|
556 |
|
557 |
results = {
|
558 |
+
"dataset": dataset.name,
|
559 |
"task": task_type,
|
560 |
"source_lang": source_lang,
|
561 |
"target_lang": target_lang,
|
|
|
569 |
}
|
570 |
|
571 |
# ์ต์ข
๊ฒฐ๊ณผ ์ ์ฅ
|
572 |
+
save_results(results, dataset.name, task_type, source_lang, target_lang)
|
573 |
return results
|
574 |
|
575 |
# ๋ฉ์ธ ์คํ ์ฝ๋
|
576 |
if __name__ == "__main__":
|
577 |
# ํ๊ฐํ ์ธ์ด ๋ชฉ๋ก (์์ค ์ธ์ด)
|
578 |
source_languages = [
|
|
|
579 |
#("ko_kr", "Korean"),
|
580 |
+
("en_us", "English"), # ์์ด (๋ฏธ๊ตญ)
|
581 |
]
|
582 |
|
583 |
# ๋ฒ์ญ ๋์ ์ธ์ด ๋ชฉ๋ก (์ฝ๋, ์ด๋ฆ)
|
584 |
target_languages = [
|
|
|
585 |
#("en_us", "English"),
|
586 |
+
("ko_kr", "Korean"),
|
587 |
]
|
588 |
|
589 |
data_dir = {
|
|
|
590 |
#"ko_kr" : "/workspace/CommonVoice/ko",
|
591 |
+
"en_us" : "/workspace/CommonVoice/EN",
|
592 |
}
|
593 |
|
594 |
# ์ํ ์ ์ค์ (-1์ ์ ์ฒด ๋ฐ์ดํฐ์
์ฌ์ฉ)
|
595 |
num_samples = -1
|
596 |
+
batch_size = 32
|
597 |
|
598 |
# ๋ชจ๋ ์์ค ์ธ์ด์ ๋ํด ASR ํ๊ฐ
|
599 |
for source_lang, target_lang in zip(source_languages, target_languages):
|
600 |
print(f"\n===== {source_lang[0]} ASR ํ๊ฐ ์์ =====")
|
601 |
|
602 |
# ๋ฐ์ดํฐ์
๋ก๋
|
603 |
+
split = "test"
|
604 |
|
605 |
+
datasets = []
|
606 |
+
|
607 |
+
# Covost ASR mode (English -> English text)
|
608 |
+
covost = CoVoSTDataset(
|
609 |
+
processor=processor,
|
610 |
+
data_dir="/workspace/CommonVoice/EN",
|
611 |
+
split=split,
|
612 |
+
ast=False,
|
613 |
+
lang=("en_ko", "Korean")
|
614 |
+
)
|
615 |
+
datasets.append(covost)
|
616 |
+
|
617 |
+
# Libri Speech Clean ASR mode (English -> English text)
|
618 |
+
libri_speech_clean = LibriSpeechDataset(
|
619 |
+
processor=processor,
|
620 |
+
subset="clean",
|
621 |
+
split=split
|
622 |
+
)
|
623 |
+
datasets.append(libri_speech_clean)
|
624 |
+
|
625 |
+
# Libri Speech Other ASR mode (English -> English text)
|
626 |
+
libri_speech_other = LibriSpeechDataset(
|
627 |
+
processor=processor,
|
628 |
+
subset="other",
|
629 |
+
split=split
|
630 |
+
)
|
631 |
+
datasets.append(libri_speech_other)
|
632 |
+
|
633 |
+
# Fleurs ASR mode (English -> English text)
|
634 |
+
fleurs = FleursDataset(
|
635 |
+
processor=processor,
|
636 |
+
split=split,
|
637 |
+
source_lang="en_us", # English
|
638 |
+
mode="asr"
|
639 |
+
)
|
640 |
+
datasets.append(fleurs)
|
641 |
+
|
642 |
+
for dataset in datasets:
|
643 |
+
# ASR ํ๊ฐ
|
644 |
+
asr_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = True)
|
645 |
|
646 |
+
print(f"\n=== {asr_results.get('dataset', 'Dataset')} | {source_lang[0]} ASR ๊ฒฐ๊ณผ ===")
|
647 |
+
print(f"BLEU: {asr_results.get('metrics', {}).get('bleu', 'N/A')}")
|
648 |
+
print(f"WER: {asr_results.get('metrics', {}).get('wer', 'N/A')}")
|
649 |
+
print(f"CER: {asr_results.get('metrics', {}).get('cer', 'N/A')}")
|
650 |
+
|
651 |
try:
|
652 |
print(f"\n===== {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ํ๊ฐ ์์ =====")
|
653 |
+
|
654 |
+
datasets = []
|
655 |
+
|
656 |
+
# Covost AST mode (English -> Korean text)
|
657 |
+
covost = CoVoSTDataset(
|
658 |
+
processor=processor,
|
659 |
+
data_dir="/workspace/CommonVoice/EN",
|
660 |
+
split=split,
|
661 |
+
ast=True,
|
662 |
+
lang=("en_ko", "Korean")
|
663 |
+
)
|
664 |
+
datasets.append(covost)
|
665 |
+
|
666 |
+
# Fleurs AST mode (English -> Korean text)
|
667 |
+
fleurs = FleursDataset(
|
668 |
+
processor=processor,
|
669 |
+
split=split,
|
670 |
+
source_lang="en_us", # English
|
671 |
+
target_lang="ko_kr", # Korean
|
672 |
+
mode="ast"
|
673 |
+
)
|
674 |
+
datasets.append(fleurs)
|
675 |
|
676 |
+
for dataset in datasets:
|
677 |
+
# ๋ฒ์ญ ํ๊ฐ
|
678 |
+
translation_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = False)
|
679 |
+
|
680 |
+
print(f"\n=== {translation_results.get('dataset', 'Dataset')} | {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ๊ฒฐ๊ณผ ===")
|
681 |
+
print(f"BLEU: {translation_results.get('metrics', {}).get('bleu', 'N/A')}")
|
682 |
+
print(f"WER: {translation_results.get('metrics', {}).get('wer', 'N/A')}")
|
683 |
+
print(f"CER: {translation_results.get('metrics', {}).get('cer', 'N/A')}")
|
684 |
|
685 |
except Exception as e:
|
686 |
error_info = {
|