Upload finetune_speech.py
Browse files- examples/finetune_speech.py +929 -0
examples/finetune_speech.py
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import sacrebleu
|
9 |
+
|
10 |
+
from datasets import load_dataset
|
11 |
+
from torch.utils.data import Dataset, ConcatDataset
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import (
|
14 |
+
AutoProcessor,
|
15 |
+
AutoModel,
|
16 |
+
BatchFeature,
|
17 |
+
Trainer,
|
18 |
+
TrainingArguments,
|
19 |
+
StoppingCriteria,
|
20 |
+
StoppingCriteriaList,
|
21 |
+
)
|
22 |
+
from collections import defaultdict
|
23 |
+
|
24 |
+
import soundfile as sf
|
25 |
+
from datasets import Audio
|
26 |
+
import random
|
27 |
+
|
28 |
+
class MultipleTokenBatchStoppingCriteria(StoppingCriteria):
|
29 |
+
"""Stopping criteria capable of receiving multiple stop-tokens and handling batched inputs."""
|
30 |
+
|
31 |
+
def __init__(self, stop_tokens: torch.LongTensor, batch_size: int = 1) -> None:
|
32 |
+
"""Initialize the multiple token batch stopping criteria.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
stop_tokens: Stop-tokens.
|
36 |
+
batch_size: Batch size.
|
37 |
+
|
38 |
+
"""
|
39 |
+
|
40 |
+
self.stop_tokens = stop_tokens
|
41 |
+
self.max_stop_tokens = stop_tokens.shape[-1]
|
42 |
+
self.stop_tokens_idx = torch.zeros(batch_size, dtype=torch.long, device=stop_tokens.device)
|
43 |
+
|
44 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
45 |
+
# Only gather the maximum number of inputs compatible with stop tokens
|
46 |
+
# and checks whether generated inputs are equal to `stop_tokens`
|
47 |
+
generated_inputs = torch.eq(input_ids[:, -self.max_stop_tokens :].unsqueeze(1), self.stop_tokens)
|
48 |
+
equal_generated_inputs = torch.all(generated_inputs, dim=2)
|
49 |
+
|
50 |
+
# Mark the position where a stop token has been produced for each input in the batch,
|
51 |
+
# but only if the corresponding entry is not already set
|
52 |
+
sequence_idx = torch.any(equal_generated_inputs, dim=1)
|
53 |
+
sequence_set_mask = self.stop_tokens_idx == 0
|
54 |
+
self.stop_tokens_idx[sequence_idx & sequence_set_mask] = input_ids.shape[-1]
|
55 |
+
|
56 |
+
return torch.all(self.stop_tokens_idx)
|
57 |
+
|
58 |
+
class BaseAudioDataset(Dataset):
|
59 |
+
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
60 |
+
self.processor = processor
|
61 |
+
self.training = "train" in split
|
62 |
+
self.debug = debug
|
63 |
+
self.sampling_rate = sampling_rate
|
64 |
+
self.name = ""
|
65 |
+
|
66 |
+
def set_dataset_name(self, name):
|
67 |
+
self.name = name
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
|
71 |
+
original_size = len(data)
|
72 |
+
|
73 |
+
data = data.cast_column(audio_field, Audio(decode=False))
|
74 |
+
|
75 |
+
def identify_corrupted_files(example):
|
76 |
+
try:
|
77 |
+
sf.read(example[audio_field]["path"])
|
78 |
+
|
79 |
+
for field in text_fields:
|
80 |
+
if field in example and example[field].replace('"', '') == "":
|
81 |
+
return False
|
82 |
+
return True
|
83 |
+
except Exception:
|
84 |
+
return False
|
85 |
+
|
86 |
+
data = data.filter(identify_corrupted_files, num_proc=16)
|
87 |
+
validated_size = len(data)
|
88 |
+
|
89 |
+
# Audio Decoding
|
90 |
+
data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
|
91 |
+
|
92 |
+
if debug:
|
93 |
+
print(f"Dataset: {dataset_name}")
|
94 |
+
print(f"Original data nums: {original_size}")
|
95 |
+
print(f"After filtering data nums: {validated_size}")
|
96 |
+
print(f"Filtering ratio: {validated_size/original_size:.2%}")
|
97 |
+
|
98 |
+
return data
|
99 |
+
|
100 |
+
@staticmethod
|
101 |
+
def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
|
102 |
+
original_size = len(data)
|
103 |
+
|
104 |
+
def filter_audio_by_length(example):
|
105 |
+
try:
|
106 |
+
audio = example[audio_field]['array']
|
107 |
+
channel = 1
|
108 |
+
if hasattr(audio, 'ndim') and audio.ndim > 1:
|
109 |
+
channel = audio.ndim
|
110 |
+
audio = audio.squeeze()
|
111 |
+
audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
|
112 |
+
return min_sec <= audio_length <= max_sec
|
113 |
+
except Exception as e:
|
114 |
+
if debug:
|
115 |
+
print(f"Error : {str(e)[:100]}... - sample excluded")
|
116 |
+
return False
|
117 |
+
|
118 |
+
data = data.filter(filter_audio_by_length, num_proc=16)
|
119 |
+
filtered_size = len(data)
|
120 |
+
|
121 |
+
if debug:
|
122 |
+
print(f"Before Length Filtering data nums: {original_size}")
|
123 |
+
print(f"After Length Filtering data nums: {filtered_size}")
|
124 |
+
print(f"Filtering ratio: {filtered_size/original_size:.2%}")
|
125 |
+
|
126 |
+
return data
|
127 |
+
|
128 |
+
def prepare_model_inputs(self, audio_array, instruction, answer_text):
|
129 |
+
user_message = {
|
130 |
+
'role': 'user',
|
131 |
+
'content': '<start_of_audio>' + instruction,
|
132 |
+
}
|
133 |
+
prompt = self.processor.tokenizer.apply_chat_template(
|
134 |
+
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
|
135 |
+
)
|
136 |
+
|
137 |
+
inputs = self.processor(
|
138 |
+
text=prompt,
|
139 |
+
audio=[audio_array],
|
140 |
+
add_special_tokens=False,
|
141 |
+
return_tensors='pt'
|
142 |
+
)
|
143 |
+
|
144 |
+
answer = f"{answer_text}{ANSWER_SUFFIX}"
|
145 |
+
answer_ids = self.processor.tokenizer(answer, add_special_tokens=False, return_tensors='pt').input_ids
|
146 |
+
|
147 |
+
if self.debug:
|
148 |
+
self.debug = False
|
149 |
+
task_type = 'AST' if hasattr(self, 'ast') and self.ast else 'ASR'
|
150 |
+
lang_info = f" - {self.lang}" if hasattr(self, 'lang') else ""
|
151 |
+
print(f"{task_type}{lang_info}\nPROMPT: {prompt}\nINPUT: {self.processor.decode(inputs.input_ids[0], skip_special_tokens=False)}\nANSWER: {self.processor.decode(answer_ids[0], skip_special_tokens=False)}\n")
|
152 |
+
print(f"INPUT_MODE: {inputs.input_modes[0].item()}")
|
153 |
+
|
154 |
+
if self.training:
|
155 |
+
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
|
156 |
+
labels = torch.full_like(input_ids, _IGNORE_INDEX)
|
157 |
+
labels[:, -answer_ids.shape[1]:] = answer_ids
|
158 |
+
padding = torch.zeros((inputs.token_type_ids.shape[0], answer_ids.shape[1]))
|
159 |
+
token_type_ids = torch.cat([inputs.token_type_ids, padding], dim=1)
|
160 |
+
else:
|
161 |
+
input_ids = inputs.input_ids
|
162 |
+
labels = answer_ids
|
163 |
+
token_type_ids = inputs.token_type_ids
|
164 |
+
|
165 |
+
return {
|
166 |
+
'input_ids': input_ids,
|
167 |
+
'labels': labels,
|
168 |
+
'token_type_ids': token_type_ids,
|
169 |
+
'input_audio_embeds': inputs.input_audio_embeds,
|
170 |
+
'audio_embed_sizes': inputs.audio_embed_sizes,
|
171 |
+
'input_modes': inputs.input_modes,
|
172 |
+
}
|
173 |
+
|
174 |
+
# CoVoST2 Dataset Class
|
175 |
+
class CoVoSTDataset(BaseAudioDataset):
|
176 |
+
def __init__(self, processor, data_dir, split, ast=False,
|
177 |
+
lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
|
178 |
+
super().__init__(processor, split, sampling_rate, debug)
|
179 |
+
|
180 |
+
self.set_dataset_name("CoVoST")
|
181 |
+
self.ast = ast
|
182 |
+
self.lang = lang[0]
|
183 |
+
|
184 |
+
self.data = load_dataset("junnei/covost2",
|
185 |
+
lang[0],
|
186 |
+
data_dir=data_dir,
|
187 |
+
split=split,
|
188 |
+
trust_remote_code=True
|
189 |
+
)
|
190 |
+
|
191 |
+
text_fields = ["sentence", "translation"] if ast else ["sentence"]
|
192 |
+
self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
|
193 |
+
|
194 |
+
# (Optional) Audio length Filtering
|
195 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
196 |
+
|
197 |
+
# Instruction Setting
|
198 |
+
self.instruction = random.choice(INSTRUCTION["ast"]).format(lang[1]) if ast else random.choice(INSTRUCTION["asr"])
|
199 |
+
|
200 |
+
def __len__(self):
|
201 |
+
return len(self.data)
|
202 |
+
|
203 |
+
def __getitem__(self, idx):
|
204 |
+
data = self.data[idx]
|
205 |
+
|
206 |
+
if self.ast:
|
207 |
+
answer_text = data["translation"]
|
208 |
+
else:
|
209 |
+
answer_text = data["sentence"].replace('"', '')
|
210 |
+
|
211 |
+
return self.prepare_model_inputs(
|
212 |
+
data["audio"]["array"],
|
213 |
+
self.instruction,
|
214 |
+
answer_text
|
215 |
+
)
|
216 |
+
|
217 |
+
# Zeroth Korean Dataset Class
|
218 |
+
class ZerothKoreanDataset(BaseAudioDataset):
|
219 |
+
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
220 |
+
super().__init__(processor, split, sampling_rate, debug)
|
221 |
+
|
222 |
+
self.set_dataset_name("Zeroth")
|
223 |
+
# only ASR
|
224 |
+
self.ast = False
|
225 |
+
self.lang = "ko"
|
226 |
+
|
227 |
+
# load dataset
|
228 |
+
self.data = load_dataset("Bingsu/zeroth-korean",
|
229 |
+
split=split,
|
230 |
+
trust_remote_code=True
|
231 |
+
)
|
232 |
+
|
233 |
+
# (Optional) Audio length Filtering
|
234 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
235 |
+
|
236 |
+
# Instruction Setting
|
237 |
+
self.instruction = random.choice(INSTRUCTION["asr"])
|
238 |
+
|
239 |
+
def __len__(self):
|
240 |
+
return len(self.data)
|
241 |
+
|
242 |
+
def __getitem__(self, idx):
|
243 |
+
data = self.data[idx]
|
244 |
+
|
245 |
+
# Zeroth Korean is only for ASR
|
246 |
+
answer_text = data["text"].replace('"', '')
|
247 |
+
|
248 |
+
return self.prepare_model_inputs(
|
249 |
+
data["audio"]["array"],
|
250 |
+
self.instruction,
|
251 |
+
answer_text
|
252 |
+
)
|
253 |
+
|
254 |
+
# Libri Speech Dataset Class
|
255 |
+
class LibriSpeechDataset(BaseAudioDataset):
|
256 |
+
def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
|
257 |
+
super().__init__(processor, split, sampling_rate, debug)
|
258 |
+
|
259 |
+
self.set_dataset_name(f"LibriSpeech_{subset}")
|
260 |
+
# only ASR
|
261 |
+
self.ast = False
|
262 |
+
self.lang = "en"
|
263 |
+
|
264 |
+
# load dataset
|
265 |
+
self.data = load_dataset("fixie-ai/librispeech_asr",
|
266 |
+
subset,
|
267 |
+
split=split,
|
268 |
+
trust_remote_code=True
|
269 |
+
)
|
270 |
+
|
271 |
+
# (Optional) Audio length Filtering
|
272 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
273 |
+
|
274 |
+
# Instruction Setting
|
275 |
+
self.instruction = random.choice(INSTRUCTION["asr"])
|
276 |
+
|
277 |
+
def __len__(self):
|
278 |
+
return len(self.data)
|
279 |
+
|
280 |
+
def __getitem__(self, idx):
|
281 |
+
data = self.data[idx]
|
282 |
+
|
283 |
+
# Libri Speech is only for ASR
|
284 |
+
answer_text = data["text"].replace('"', '')
|
285 |
+
|
286 |
+
return self.prepare_model_inputs(
|
287 |
+
data["audio"]["array"],
|
288 |
+
self.instruction,
|
289 |
+
answer_text
|
290 |
+
)
|
291 |
+
|
292 |
+
# Fleurs Dataset Class
|
293 |
+
class FleursDataset(BaseAudioDataset):
|
294 |
+
def __init__(self, processor, split, source_lang, target_lang=None,
|
295 |
+
mode="asr", sampling_rate=16000, debug=False):
|
296 |
+
super().__init__(processor, split, sampling_rate, debug)
|
297 |
+
|
298 |
+
self.set_dataset_name("Fleurs")
|
299 |
+
# Mode Setting (ASR or AST)
|
300 |
+
if mode not in ["asr", "ast"]:
|
301 |
+
raise ValueError("mode must be 'asr' or 'ast'.")
|
302 |
+
|
303 |
+
self.mode = mode
|
304 |
+
self.ast = (mode == "ast")
|
305 |
+
self.source_lang = source_lang
|
306 |
+
|
307 |
+
# Language name mapping (expand if needed)
|
308 |
+
self.lang_names = {
|
309 |
+
'en_us': 'English', 'ko_kr': 'Korean'
|
310 |
+
}
|
311 |
+
|
312 |
+
# load dataset - source language dataset
|
313 |
+
self.data = load_dataset("google/fleurs",
|
314 |
+
source_lang,
|
315 |
+
split=split,
|
316 |
+
trust_remote_code=True
|
317 |
+
)
|
318 |
+
|
319 |
+
# (Optional) Audio length Filtering
|
320 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
321 |
+
|
322 |
+
# When AST mode, load target language dataset.
|
323 |
+
if self.ast:
|
324 |
+
if target_lang is None:
|
325 |
+
raise ValueError("AST mode requires target_lang.")
|
326 |
+
|
327 |
+
self.target_lang = target_lang
|
328 |
+
self.lang = f"{source_lang}_{target_lang}"
|
329 |
+
|
330 |
+
# load dataset - target language dataset (for translation)
|
331 |
+
target_data = load_dataset("google/fleurs",
|
332 |
+
target_lang,
|
333 |
+
split=split,
|
334 |
+
trust_remote_code=True
|
335 |
+
)
|
336 |
+
|
337 |
+
source_dict = {item['id']: item for item in self.data}
|
338 |
+
target_dict = {item['id']: item for item in target_data}
|
339 |
+
|
340 |
+
# only Common ID, add translation fields
|
341 |
+
common_ids = set(source_dict.keys()) & set(target_dict.keys())
|
342 |
+
print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
|
343 |
+
self.data = [
|
344 |
+
{**source_dict[id], 'translation': target_dict[id]['transcription']}
|
345 |
+
for id in common_ids
|
346 |
+
]
|
347 |
+
|
348 |
+
# Instruction Setting - use target language name
|
349 |
+
target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
|
350 |
+
self.instruction = random.choice(INSTRUCTION["ast"]).format(target_lang_name)
|
351 |
+
else:
|
352 |
+
# ASR mode
|
353 |
+
self.lang = source_lang
|
354 |
+
self.instruction = random.choice(INSTRUCTION["asr"])
|
355 |
+
|
356 |
+
if self.debug:
|
357 |
+
print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
|
358 |
+
print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
|
359 |
+
if self.ast:
|
360 |
+
print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
|
361 |
+
print(f"dataset size: {len(self.data)}")
|
362 |
+
|
363 |
+
def __len__(self):
|
364 |
+
return len(self.data)
|
365 |
+
|
366 |
+
def __getitem__(self, idx):
|
367 |
+
data = self.data[idx]
|
368 |
+
audio_array = data["audio"]["array"]
|
369 |
+
|
370 |
+
if self.ast:
|
371 |
+
answer_text = data["translation"]
|
372 |
+
else:
|
373 |
+
answer_text = data["transcription"]
|
374 |
+
|
375 |
+
return self.prepare_model_inputs(
|
376 |
+
audio_array,
|
377 |
+
self.instruction,
|
378 |
+
answer_text
|
379 |
+
)
|
380 |
+
|
381 |
+
def covost_collate_fn(batch):
|
382 |
+
input_ids_list = []
|
383 |
+
labels_list = []
|
384 |
+
token_type_ids_list = []
|
385 |
+
input_audio_embeds_list = []
|
386 |
+
audio_embed_sizes_list = []
|
387 |
+
audio_attention_mask_list = []
|
388 |
+
input_modes_list = []
|
389 |
+
for inputs in batch:
|
390 |
+
input_ids_list.append(inputs['input_ids'][0])
|
391 |
+
labels_list.append(inputs['labels'][0])
|
392 |
+
token_type_ids_list.append(inputs['token_type_ids'][0])
|
393 |
+
input_audio_embeds_list.append(inputs['input_audio_embeds'])
|
394 |
+
audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
|
395 |
+
audio_attention_mask_list.append(
|
396 |
+
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
397 |
+
)
|
398 |
+
input_modes_list.append(inputs['input_modes'])
|
399 |
+
|
400 |
+
try:
|
401 |
+
token_type_ids = pad_sequence(token_type_ids_list, padding_side='left', padding_value=0)
|
402 |
+
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
|
403 |
+
labels = pad_sequence(labels_list, padding_side='left', padding_value=0)
|
404 |
+
audio_attention_mask = (
|
405 |
+
pad_sequence(audio_attention_mask_list, padding_side='left', padding_value=False)
|
406 |
+
if len(audio_attention_mask_list) > 1
|
407 |
+
else None
|
408 |
+
)
|
409 |
+
except Exception as e:
|
410 |
+
print(e)
|
411 |
+
print(input_ids_list)
|
412 |
+
print(labels_list)
|
413 |
+
raise
|
414 |
+
attention_mask = (input_ids != 0).long()
|
415 |
+
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
|
416 |
+
audio_embed_sizes = torch.cat(audio_embed_sizes_list)
|
417 |
+
input_modes = torch.cat(input_modes_list)
|
418 |
+
|
419 |
+
return BatchFeature(
|
420 |
+
{
|
421 |
+
'input_ids': input_ids,
|
422 |
+
'labels': labels,
|
423 |
+
'token_type_ids': token_type_ids,
|
424 |
+
'attention_mask': attention_mask,
|
425 |
+
'input_audio_embeds': input_audio_embeds,
|
426 |
+
'audio_embed_sizes': audio_embed_sizes,
|
427 |
+
'audio_attention_mask': audio_attention_mask,
|
428 |
+
'input_modes': input_modes,
|
429 |
+
}
|
430 |
+
)
|
431 |
+
|
432 |
+
def pad_sequence(sequences, padding_side='left', padding_value=0):
|
433 |
+
"""
|
434 |
+
Pad a list of sequences to the same length.
|
435 |
+
sequences: list of tensors in [seq_len, *] shape
|
436 |
+
"""
|
437 |
+
assert padding_side in ['right', 'left']
|
438 |
+
max_size = sequences[0].size()
|
439 |
+
trailing_dims = max_size[1:]
|
440 |
+
max_len = max(len(seq) for seq in sequences)
|
441 |
+
batch_size = len(sequences)
|
442 |
+
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
|
443 |
+
for i, seq in enumerate(sequences):
|
444 |
+
length = seq.size(0)
|
445 |
+
if padding_side == 'right':
|
446 |
+
output.data[i, :length] = seq
|
447 |
+
else:
|
448 |
+
output.data[i, -length:] = seq
|
449 |
+
return output
|
450 |
+
|
451 |
+
def cat_with_pad(tensors, dim, padding_value=0):
|
452 |
+
"""
|
453 |
+
cat along dim, while pad to max for all other dims
|
454 |
+
"""
|
455 |
+
ndim = tensors[0].dim()
|
456 |
+
assert all(
|
457 |
+
t.dim() == ndim for t in tensors[1:]
|
458 |
+
), 'All tensors must have the same number of dimensions'
|
459 |
+
|
460 |
+
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
|
461 |
+
out_size[dim] = sum(t.shape[dim] for t in tensors)
|
462 |
+
output = tensors[0].new_full(out_size, padding_value)
|
463 |
+
|
464 |
+
index = 0
|
465 |
+
for t in tensors:
|
466 |
+
# Create a slice list where every dimension except dim is full slice
|
467 |
+
slices = [slice(0, t.shape[d]) for d in range(ndim)]
|
468 |
+
# Update only the concat dimension slice
|
469 |
+
slices[dim] = slice(index, index + t.shape[dim])
|
470 |
+
|
471 |
+
output[slices] = t
|
472 |
+
index += t.shape[dim]
|
473 |
+
|
474 |
+
return output
|
475 |
+
|
476 |
+
def count_parameters_by_module(model):
|
477 |
+
# dictionary for parameters number by modules
|
478 |
+
module_params = defaultdict(lambda: {"total": 0, "trainable": 0})
|
479 |
+
|
480 |
+
# all params
|
481 |
+
total_params = 0
|
482 |
+
total_trainable_params = 0
|
483 |
+
|
484 |
+
# Check Embedding Token masks
|
485 |
+
embedding_masks = {}
|
486 |
+
for name, param in model.named_parameters():
|
487 |
+
if 'embed_tokens.weight' in name and hasattr(param, '_backward_hooks') and param._backward_hooks:
|
488 |
+
# check if params has embedding_grad_mask_hook
|
489 |
+
for hook_id, hook_fn in param._backward_hooks.items():
|
490 |
+
if hook_fn.__code__.co_name == 'embedding_grad_mask_hook':
|
491 |
+
# Accessing mask variables in the closure of hook functions
|
492 |
+
for cell in hook_fn.__closure__ or []:
|
493 |
+
if isinstance(cell.cell_contents, torch.Tensor) and cell.cell_contents.dtype == torch.bool:
|
494 |
+
# check mask tensor
|
495 |
+
embedding_masks[name] = ~cell.cell_contents # True : Trainable
|
496 |
+
|
497 |
+
# Count params by modules
|
498 |
+
for name, param in model.named_parameters():
|
499 |
+
# extracts top module_name
|
500 |
+
module_name = name.split('.')[0]
|
501 |
+
param_count = param.numel()
|
502 |
+
|
503 |
+
module_params[module_name]["total"] += param_count
|
504 |
+
total_params += param_count
|
505 |
+
|
506 |
+
if param.requires_grad:
|
507 |
+
# Only count for real trainable params. (with masks)
|
508 |
+
if name in embedding_masks:
|
509 |
+
trainable_count = embedding_masks[name].sum().item()
|
510 |
+
module_params[module_name]["trainable"] += trainable_count
|
511 |
+
total_trainable_params += trainable_count
|
512 |
+
else:
|
513 |
+
module_params[module_name]["trainable"] += param_count
|
514 |
+
total_trainable_params += param_count
|
515 |
+
|
516 |
+
print(f"All Params: {total_params:,}")
|
517 |
+
print(f"Trainable Params: {total_trainable_params:,} ({total_trainable_params/total_params*100:.2f}%)")
|
518 |
+
print("\nParams by Module:")
|
519 |
+
|
520 |
+
for module_name, counts in sorted(module_params.items()):
|
521 |
+
trainable_percentage = counts["trainable"] / counts["total"] * 100 if counts["total"] > 0 else 0
|
522 |
+
total_percentage = counts["total"] / total_params * 100
|
523 |
+
|
524 |
+
print(f"- {module_name}:")
|
525 |
+
print(f" Total: {counts['total']:,} ({total_percentage:.2f}% of model)")
|
526 |
+
print(f" Trainable: {counts['trainable']:,} ({trainable_percentage:.2f}% of module)")
|
527 |
+
|
528 |
+
return module_params
|
529 |
+
|
530 |
+
def create_model(model_name_or_path, revision="main", use_flash_attention = False):
|
531 |
+
model = AutoModel.from_pretrained(
|
532 |
+
model_name_or_path,
|
533 |
+
revision=revision,
|
534 |
+
torch_dtype=torch.bfloat16,
|
535 |
+
device_map="auto",
|
536 |
+
attn_implementation="flash_attention_2" if use_flash_attention else "eager",
|
537 |
+
trust_remote_code=True,
|
538 |
+
)
|
539 |
+
|
540 |
+
# Set use_cache to False after model loaded
|
541 |
+
model.config.use_cache = False
|
542 |
+
|
543 |
+
# Freeze all parameters
|
544 |
+
for param in model.parameters():
|
545 |
+
param.requires_grad = False
|
546 |
+
|
547 |
+
model.set_lora_adapter('speech')
|
548 |
+
model.to(torch.bfloat16)
|
549 |
+
|
550 |
+
# (Optional) unfreeze audio_tower parameters
|
551 |
+
#for param in model.audio_tower.parameters():
|
552 |
+
# param.requires_grad = True
|
553 |
+
|
554 |
+
# Only unfreeze audio_projector parameters
|
555 |
+
for param in model.audio_projector.parameters():
|
556 |
+
param.requires_grad = True
|
557 |
+
|
558 |
+
# (Optional) unfreeze audio embed_tokens
|
559 |
+
train_embed = True
|
560 |
+
if train_embed:
|
561 |
+
embed_tokens = model.language_model.model.model.embed_tokens
|
562 |
+
|
563 |
+
embed_tokens.weight.requires_grad = False
|
564 |
+
|
565 |
+
# Added Speech token IDs (only this tokens be trainable)
|
566 |
+
trainable_token_ids = [256001, 256002]
|
567 |
+
|
568 |
+
embed_tokens.weight.requires_grad = True
|
569 |
+
mask = torch.ones_like(embed_tokens.weight, dtype=torch.bool)
|
570 |
+
mask[trainable_token_ids] = False # Trainable Tokens are False (unfreeze), else True (freeze)
|
571 |
+
|
572 |
+
# backward hook, with gradient masking
|
573 |
+
def embedding_grad_mask_hook(grad):
|
574 |
+
return grad.masked_fill(mask, 0)
|
575 |
+
|
576 |
+
embed_tokens.weight.register_hook(embedding_grad_mask_hook)
|
577 |
+
|
578 |
+
model.language_model.model.model.embed_tokens = embed_tokens
|
579 |
+
|
580 |
+
count_parameters_by_module(model)
|
581 |
+
|
582 |
+
return model
|
583 |
+
|
584 |
+
@torch.no_grad()
|
585 |
+
def evaluate(model, processor, eval_dataset, save_path=None, disable_tqdm=False, eval_batch_size=1):
|
586 |
+
model.eval()
|
587 |
+
all_generated_texts = []
|
588 |
+
all_labels = []
|
589 |
+
|
590 |
+
eval_dataloader = torch.utils.data.DataLoader(
|
591 |
+
eval_dataset,
|
592 |
+
batch_size=eval_batch_size,
|
593 |
+
collate_fn=covost_collate_fn,
|
594 |
+
shuffle=False,
|
595 |
+
drop_last=False,
|
596 |
+
num_workers=8,
|
597 |
+
prefetch_factor=2,
|
598 |
+
pin_memory=True,
|
599 |
+
)
|
600 |
+
stop_tokens = [processor.tokenizer.eos_token]
|
601 |
+
stop_tokens_ids = processor.tokenizer(stop_tokens, add_special_tokens=False, padding="longest", return_tensors="pt")["input_ids"]
|
602 |
+
stop_tokens_ids = stop_tokens_ids.to('cuda')
|
603 |
+
|
604 |
+
for inputs in tqdm(
|
605 |
+
eval_dataloader, disable= disable_tqdm, desc='running eval'
|
606 |
+
):
|
607 |
+
stopping_criteria=StoppingCriteriaList([MultipleTokenBatchStoppingCriteria(stop_tokens_ids, batch_size=inputs.input_ids.size(0))])
|
608 |
+
inputs = inputs.to('cuda').to(model.dtype)
|
609 |
+
generated_ids = model.generate(
|
610 |
+
**inputs, eos_token_id=processor.tokenizer.eos_token_id, max_new_tokens=64,
|
611 |
+
stopping_criteria=stopping_criteria,
|
612 |
+
)
|
613 |
+
|
614 |
+
stop_tokens_idx = stopping_criteria[0].stop_tokens_idx.reshape(inputs.input_ids.size(0), -1)[:, 0]
|
615 |
+
|
616 |
+
stop_tokens_idx = torch.where(
|
617 |
+
stop_tokens_idx > 0,
|
618 |
+
stop_tokens_idx - stop_tokens_ids.shape[-1],
|
619 |
+
generated_ids.shape[-1],
|
620 |
+
)
|
621 |
+
generated_text = [
|
622 |
+
processor.decode(_pred_ids[inputs["input_ids"].shape[1] : _stop_tokens_idx], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
623 |
+
for _pred_ids, _stop_tokens_idx in zip(generated_ids, stop_tokens_idx)
|
624 |
+
]
|
625 |
+
all_generated_texts.extend(generated_text)
|
626 |
+
labels = [processor.decode(_label_ids[_label_ids != 0]).removesuffix(ANSWER_SUFFIX) for _label_ids in inputs["labels"]]
|
627 |
+
all_labels.extend(labels)
|
628 |
+
|
629 |
+
assert len(all_generated_texts) == len(all_labels)
|
630 |
+
bleu = sacrebleu.corpus_bleu(all_generated_texts, [all_labels])
|
631 |
+
print(bleu)
|
632 |
+
if save_path:
|
633 |
+
with open(save_path, 'w') as f:
|
634 |
+
save_dict = {
|
635 |
+
'all_generated_texts': all_generated_texts,
|
636 |
+
'all_labels': all_labels,
|
637 |
+
'score': bleu.score,
|
638 |
+
}
|
639 |
+
json.dump(save_dict, f)
|
640 |
+
|
641 |
+
return bleu.score
|
642 |
+
|
643 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
644 |
+
|
645 |
+
INSTRUCTION = {
|
646 |
+
"ast": [
|
647 |
+
"Translate the audio to {0}.",
|
648 |
+
"Translate the audio clip into {0}.",
|
649 |
+
"Based on the attached audio, generate a comprehensive {0} translation of the spoken content.",
|
650 |
+
"Translate the provided audio file into {0}.",
|
651 |
+
"Convert the audio speech to {0} text.",
|
652 |
+
"Write an {0} translation of the audio file.",
|
653 |
+
"Translate spoken words from the audio into {0}.",
|
654 |
+
"Create an {0} version of the audio content.",
|
655 |
+
"Produce an accurate {0} translation of the audio.",
|
656 |
+
"Extract speech from the audio and translate it to {0}.",
|
657 |
+
"Turn the audio into readable {0} text.",
|
658 |
+
"Write all spoken content from the audio in {0}.",
|
659 |
+
"Generate an {0} translation of the speech in the file.",
|
660 |
+
"Convert the recording into {0} text.",
|
661 |
+
"Accurately translate the audio recording to {0}.",
|
662 |
+
"Write down dialogue from the given audio in {0}.",
|
663 |
+
"Translate all speech in this audio file to {0}.",
|
664 |
+
"Create an accurate {0} version of the speech.",
|
665 |
+
"Perform a complete {0} translation of the audio."
|
666 |
+
],
|
667 |
+
"asr": [
|
668 |
+
"Transcribe the audio clip into text.",
|
669 |
+
"Based on the attached audio, generate a comprehensive text transcription of the spoken content.",
|
670 |
+
"Transcribe the provided audio file into text.",
|
671 |
+
"Convert the audio speech to text.",
|
672 |
+
"Write a transcript of the audio file.",
|
673 |
+
"Transcribe spoken words from the audio.",
|
674 |
+
"Create a text version of the audio content.",
|
675 |
+
"Produce a verbatim transcript of the audio.",
|
676 |
+
"Extract and transcribe speech from the audio.",
|
677 |
+
"Turn the audio into readable text.",
|
678 |
+
"Write all spoken words from the audio.",
|
679 |
+
"Generate a transcript of the speech in the file.",
|
680 |
+
"Convert the recording into a text transcript.",
|
681 |
+
"Accurately transcribe the audio recording.",
|
682 |
+
"Write down dialogue from the given audio.",
|
683 |
+
"Transcribe all speech in this audio file.",
|
684 |
+
"Create an accurate text version of the speech.",
|
685 |
+
"Perform a complete transcription of the audio."
|
686 |
+
],
|
687 |
+
}
|
688 |
+
|
689 |
+
ANSWER_SUFFIX = "<end_of_turn>"
|
690 |
+
_IGNORE_INDEX = -100
|
691 |
+
|
692 |
+
model_name_or_path = 'junnei/gemma-3-4b-it-speech'
|
693 |
+
use_flash_attention = True
|
694 |
+
|
695 |
+
output_dir = '/workspace/output'
|
696 |
+
batch_size = 128
|
697 |
+
batch_size_per_gpu = 32
|
698 |
+
learning_rate = 4.0e-5 # 1.0e-4 for fine-tuning
|
699 |
+
wd = 0.01
|
700 |
+
num_train_epochs = 5
|
701 |
+
|
702 |
+
revision = "main" #"v1.0"
|
703 |
+
|
704 |
+
processor = AutoProcessor.from_pretrained(
|
705 |
+
model_name_or_path,
|
706 |
+
revision=revision,
|
707 |
+
trust_remote_code=True,
|
708 |
+
)
|
709 |
+
|
710 |
+
model = create_model(
|
711 |
+
model_name_or_path,
|
712 |
+
revision=revision,
|
713 |
+
use_flash_attention=use_flash_attention,
|
714 |
+
)
|
715 |
+
|
716 |
+
train_datasets = []
|
717 |
+
|
718 |
+
# Covost ASR mode (English -> English text)
|
719 |
+
covost_asr_dataset = CoVoSTDataset(
|
720 |
+
processor=processor,
|
721 |
+
data_dir="/workspace/CommonVoice/EN",
|
722 |
+
split="train",
|
723 |
+
ast=False,
|
724 |
+
lang=("en_ko", "Korean")
|
725 |
+
)
|
726 |
+
train_datasets.append(covost_asr_dataset)
|
727 |
+
|
728 |
+
# Covost AST mode (English -> Korean text)
|
729 |
+
covost_dataset = CoVoSTDataset(
|
730 |
+
processor=processor,
|
731 |
+
data_dir="/workspace/CommonVoice/EN",
|
732 |
+
split="train",
|
733 |
+
ast=True,
|
734 |
+
lang=("en_ko", "Korean")
|
735 |
+
)
|
736 |
+
train_datasets.append(covost_dataset)
|
737 |
+
|
738 |
+
# Libri Speech Clean ASR mode (English -> English text)
|
739 |
+
libri_speech_clean = LibriSpeechDataset(
|
740 |
+
processor=processor,
|
741 |
+
subset="clean",
|
742 |
+
split="train.360"
|
743 |
+
)
|
744 |
+
train_datasets.append(libri_speech_clean)
|
745 |
+
|
746 |
+
# Libri Speech Other ASR mode (English -> English text)
|
747 |
+
libri_speech_other = LibriSpeechDataset(
|
748 |
+
processor=processor,
|
749 |
+
subset="other",
|
750 |
+
split="train.500"
|
751 |
+
)
|
752 |
+
train_datasets.append(libri_speech_other)
|
753 |
+
|
754 |
+
# Fleurs ASR mode (English -> English text)
|
755 |
+
en_asr_fleurs = FleursDataset(
|
756 |
+
processor=processor,
|
757 |
+
split="train",
|
758 |
+
source_lang="en_us", # English
|
759 |
+
mode="asr"
|
760 |
+
)
|
761 |
+
train_datasets.append(en_asr_fleurs)
|
762 |
+
|
763 |
+
# Fleurs AST mode (English -> Korean text)
|
764 |
+
en_ko_ast_fleurs = FleursDataset(
|
765 |
+
processor=processor,
|
766 |
+
split="train",
|
767 |
+
source_lang="en_us", # English
|
768 |
+
target_lang="ko_kr", # Korean
|
769 |
+
mode="ast"
|
770 |
+
)
|
771 |
+
train_datasets.append(en_ko_ast_fleurs)
|
772 |
+
|
773 |
+
# Covost ASR mode (Korean -> Korean text)
|
774 |
+
covost_ko_asr_dataset = CoVoSTDataset(
|
775 |
+
processor=processor,
|
776 |
+
data_dir="/workspace/CommonVoice/ko",
|
777 |
+
split="train",
|
778 |
+
ast=False,
|
779 |
+
lang=("ko_en", "English")
|
780 |
+
)
|
781 |
+
train_datasets.append(covost_ko_asr_dataset)
|
782 |
+
|
783 |
+
# Covost AST mode (Korean -> English text)
|
784 |
+
covost_ko_dataset = CoVoSTDataset(
|
785 |
+
processor=processor,
|
786 |
+
data_dir="/workspace/CommonVoice/ko",
|
787 |
+
split="train",
|
788 |
+
ast=True,
|
789 |
+
lang=("ko_en", "English")
|
790 |
+
)
|
791 |
+
train_datasets.append(covost_ko_dataset)
|
792 |
+
|
793 |
+
# Zeroth ASR mode (Korean -> Korean text)
|
794 |
+
ko_asr_zeroth = ZerothKoreanDataset(
|
795 |
+
processor=processor,
|
796 |
+
split="train"
|
797 |
+
)
|
798 |
+
train_datasets.append(ko_asr_zeroth)
|
799 |
+
|
800 |
+
# Fleurs ASR mode (Korean -> Korean text)
|
801 |
+
ko_asr_fleurs = FleursDataset(
|
802 |
+
processor=processor,
|
803 |
+
split="train",
|
804 |
+
source_lang="ko_kr", # Korean
|
805 |
+
mode="asr"
|
806 |
+
)
|
807 |
+
train_datasets.append(ko_asr_fleurs)
|
808 |
+
|
809 |
+
# Fleurs AST mode (Korean -> English text)
|
810 |
+
ko_en_ast_fleurs = FleursDataset(
|
811 |
+
processor=processor,
|
812 |
+
split="train",
|
813 |
+
source_lang="ko_kr", # Korean
|
814 |
+
target_lang="en_us", # English
|
815 |
+
mode="ast"
|
816 |
+
)
|
817 |
+
train_datasets.append(ko_en_ast_fleurs)
|
818 |
+
|
819 |
+
print("Count Num of Datasets", len(train_datasets))
|
820 |
+
print([len(dataset) for dataset in train_datasets])
|
821 |
+
|
822 |
+
# ConcatDataset
|
823 |
+
train_dataset = ConcatDataset(train_datasets) if len(train_datasets) > 1 else train_datasets[0]
|
824 |
+
print("Count Length of Datas", len(train_dataset))
|
825 |
+
|
826 |
+
# Check GPUs
|
827 |
+
num_gpus = torch.cuda.device_count()
|
828 |
+
print(f'training on {num_gpus} GPUs')
|
829 |
+
|
830 |
+
assert (
|
831 |
+
batch_size % (num_gpus * batch_size_per_gpu) == 0
|
832 |
+
), 'Batch size must be divisible by the number of GPUs'
|
833 |
+
gradient_accumulation_steps = batch_size // (num_gpus * batch_size_per_gpu)
|
834 |
+
|
835 |
+
# hard coded training args
|
836 |
+
training_args = TrainingArguments(
|
837 |
+
num_train_epochs=num_train_epochs,
|
838 |
+
per_device_train_batch_size=batch_size_per_gpu,
|
839 |
+
gradient_checkpointing=True,
|
840 |
+
gradient_checkpointing_kwargs={'use_reentrant': False},
|
841 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
842 |
+
optim='adamw_torch',
|
843 |
+
adam_beta1=0.9,
|
844 |
+
adam_beta2=0.95,
|
845 |
+
adam_epsilon=1e-7,
|
846 |
+
learning_rate=learning_rate,
|
847 |
+
weight_decay=wd,
|
848 |
+
max_grad_norm=1.0,
|
849 |
+
lr_scheduler_type='cosine',
|
850 |
+
warmup_steps=50,
|
851 |
+
logging_steps=50,
|
852 |
+
output_dir=output_dir,
|
853 |
+
save_strategy='no',
|
854 |
+
save_total_limit=10,
|
855 |
+
save_only_model=True,
|
856 |
+
bf16=True,
|
857 |
+
fp16=False,
|
858 |
+
remove_unused_columns=False,
|
859 |
+
report_to='none',
|
860 |
+
deepspeed=None,
|
861 |
+
disable_tqdm=False,
|
862 |
+
dataloader_num_workers=4,
|
863 |
+
ddp_find_unused_parameters=True,
|
864 |
+
)
|
865 |
+
|
866 |
+
out_path = Path(training_args.output_dir)
|
867 |
+
out_path.mkdir(parents=True, exist_ok=True)
|
868 |
+
|
869 |
+
# create optimizer only for trainable params
|
870 |
+
optimizer = torch.optim.AdamW(
|
871 |
+
filter(lambda p: p.requires_grad, model.parameters()),
|
872 |
+
lr=learning_rate,
|
873 |
+
weight_decay=wd,
|
874 |
+
betas=(0.9, 0.95),
|
875 |
+
eps=1e-7,
|
876 |
+
)
|
877 |
+
|
878 |
+
# Trainer Setting
|
879 |
+
trainer = Trainer(
|
880 |
+
model=model,
|
881 |
+
args=training_args,
|
882 |
+
data_collator=covost_collate_fn,
|
883 |
+
train_dataset=train_dataset,
|
884 |
+
optimizers=(optimizer, None),
|
885 |
+
)
|
886 |
+
|
887 |
+
trainer.train()
|
888 |
+
|
889 |
+
import shutil
|
890 |
+
|
891 |
+
# setting output dir
|
892 |
+
output_dir = "/workspace/output"
|
893 |
+
|
894 |
+
# 1. Save LoRA Adapter
|
895 |
+
model.language_model.model.save_pretrained(output_dir)
|
896 |
+
|
897 |
+
# 1-1. Delete Markdown file
|
898 |
+
markdown_file = os.path.join(output_dir, "README.md")
|
899 |
+
if os.path.exists(markdown_file):
|
900 |
+
os.remove(markdown_file)
|
901 |
+
|
902 |
+
# 2. Save entire model
|
903 |
+
model.save_pretrained(output_dir)
|
904 |
+
|
905 |
+
# 3. Cleanup Memory
|
906 |
+
del model
|
907 |
+
del trainer
|
908 |
+
__import__('gc').collect()
|
909 |
+
torch.cuda.empty_cache()
|
910 |
+
|
911 |
+
from huggingface_hub import HfApi, login, create_repo, Repository, upload_folder
|
912 |
+
|
913 |
+
upload_dir = "/workspace/upload"
|
914 |
+
|
915 |
+
# 4. Clone Repo
|
916 |
+
repo_id = "junnei/gemma-3-4b-it-speech"
|
917 |
+
branch_name = "main" # 새 브랜치 이름
|
918 |
+
|
919 |
+
repo = Repository(local_dir=upload_dir, clone_from = repo_id)
|
920 |
+
repo.git_checkout(branch_name, create_branch_ok=True)
|
921 |
+
|
922 |
+
# 4-1. Move Trained model to Repo
|
923 |
+
for item in os.listdir(output_dir):
|
924 |
+
s = os.path.join(output_dir, item)
|
925 |
+
d = os.path.join(upload_dir, item)
|
926 |
+
if os.path.isdir(s):
|
927 |
+
shutil.copytree(s, d, dirs_exist_ok=True)
|
928 |
+
else:
|
929 |
+
shutil.copy2(s, d)
|