--- language: - de license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper small de results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: de split: other args: 'config: de, split: test' metrics: - name: Wer type: wer value: 11.98839498497565 --- # Whisper small de This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2317 - Wer: 11.9884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 220 - training_steps: 2200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2309 | 0.25 | 550 | 0.2681 | 12.4339 | | 0.1415 | 0.5 | 1100 | 0.2456 | 11.4703 | | 0.2352 | 0.75 | 1650 | 0.2360 | 11.2216 | | 0.1589 | 1.0 | 2200 | 0.2317 | 11.9884 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.6.dev0 - Tokenizers 0.14.0