--- base_model: - meta-llama/Llama-3.3-70B-Instruct base_model_relation: quantized license: mit --- # Model Card - Base model: `meta-llama/Llama-3.3-70B-Instruct` - Quantization method: LNQ with GuidedQuant Hessian - Target bit-width: 3 - Backend kernel: Any-Precision-LLM kernel (`ap-gemv`) - Calibration data: RedPajama (1024 sentences / 4096 tokens) - Calibration objective: Next-token prediction - num_groups (for GuidedQuant Hessian): 1 # How to run - Follow the instruction in https://github.com/snu-mllab/GuidedQuant. # References - [Model Paper](https://arxiv.org/abs/2505.07004)