Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ This is a Large Language Model (LLM) fine-tuned to solve math problems with deta
|
|
24 |
- **Fine-tuning Method**: PEFT (Parameter-Efficient Fine-Tuning) with QLoRA
|
25 |
- **Quantization**: 4-bit quantization for reduced memory usage
|
26 |
- **Training Framework**: Unsloth, optimized for efficient fine-tuning of large language models
|
27 |
-
- **Training Environment**: Google Colab (free tier), NVIDIA T4 GPU (
|
28 |
- **Dataset Used**: TIGER-Lab/MathInstruct (Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su, Y., & Chen, W. (2023). MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning. *arXiv preprint arXiv:2309.05653*.
|
29 |
), 560 selected math problems and solutions
|
30 |
|
|
|
24 |
- **Fine-tuning Method**: PEFT (Parameter-Efficient Fine-Tuning) with QLoRA
|
25 |
- **Quantization**: 4-bit quantization for reduced memory usage
|
26 |
- **Training Framework**: Unsloth, optimized for efficient fine-tuning of large language models
|
27 |
+
- **Training Environment**: Google Colab (free tier), NVIDIA T4 GPU (16GB VRAM), 12GB RAM
|
28 |
- **Dataset Used**: TIGER-Lab/MathInstruct (Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su, Y., & Chen, W. (2023). MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning. *arXiv preprint arXiv:2309.05653*.
|
29 |
), 560 selected math problems and solutions
|
30 |
|