Update README.md
Browse files
README.md
CHANGED
@@ -28,7 +28,7 @@ This is a Large Language Model (LLM) fine-tuned to solve sst problems with detai
|
|
28 |
- **Fine-tuning Method**: PEFT (Parameter-Efficient Fine-Tuning) with QLoRA
|
29 |
- **Quantization**: 4-bit quantization for reduced memory usage
|
30 |
- **Training Framework**: Unsloth, optimized for efficient fine-tuning of large language models
|
31 |
-
- **Training Environment**: Google Colab (free tier), NVIDIA T4 GPU (
|
32 |
- **Dataset Used**: Combination of ambrosfitz/10k_history_data_v4, adamo1139/basic_economics_questions_ts_test_1, adamo1139/basic_economics_questions_ts_test_2, adamo1139/basic_economics_questions_ts_test_3, adamo1139/basic_economics_questions_ts_test_4
|
33 |
|
34 |
## Capabilities
|
|
|
28 |
- **Fine-tuning Method**: PEFT (Parameter-Efficient Fine-Tuning) with QLoRA
|
29 |
- **Quantization**: 4-bit quantization for reduced memory usage
|
30 |
- **Training Framework**: Unsloth, optimized for efficient fine-tuning of large language models
|
31 |
+
- **Training Environment**: Google Colab (free tier), NVIDIA T4 GPU (16GB VRAM), 12GB RAM
|
32 |
- **Dataset Used**: Combination of ambrosfitz/10k_history_data_v4, adamo1139/basic_economics_questions_ts_test_1, adamo1139/basic_economics_questions_ts_test_2, adamo1139/basic_economics_questions_ts_test_3, adamo1139/basic_economics_questions_ts_test_4
|
33 |
|
34 |
## Capabilities
|