Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +713 -0
- config.json +25 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- trainer_state.json +3023 -0
- training_args.bin +3 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:18240762
|
8 |
+
- loss:MSELoss
|
9 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: Yeah, fire in the park, let's go!
|
12 |
+
sentences:
|
13 |
+
- 午前2時頃に音楽が止まり、それから熟睡。
|
14 |
+
- 彼はニンジンが好きではないので、食べなかった。
|
15 |
+
- 公園のライトアップ、ぜひ行こうね!
|
16 |
+
- source_sentence: Population is around 5.7 million people.
|
17 |
+
sentences:
|
18 |
+
- 人口は約570万人です。
|
19 |
+
- カンドンベの音楽はcuerdaと呼ばれるドラマーのグループによって演奏される。
|
20 |
+
- 'シノプシス: 2116年—日本政府はシビルシステムの無人ドローンロボットを問題のある国に輸出し始め、システムは世界中に広がっています。'
|
21 |
+
- source_sentence: With EMUI 5.0, the Huawei Mate 9 becomes more intelligent and efficient
|
22 |
+
over time by understanding consumers’ behaviour patterns and ensures the highest
|
23 |
+
priority applications are given preference subject to system resources.
|
24 |
+
sentences:
|
25 |
+
- 私も今はクルマを持っていません。
|
26 |
+
- ガジュマルの樹を見に行きたいです。
|
27 |
+
- EMUI5.0では、『HUAWEI Mate 9』が消費者の行動パターンを理解し、時間をかけて知能と効率を上げ、優先順位の最も高いアプリをシステム消費源の対象に優先される事を保証します。
|
28 |
+
- source_sentence: What are the differences between the environments and geographical
|
29 |
+
positions of the East and the West?
|
30 |
+
sentences:
|
31 |
+
- 環境と地理的位置に関して、東洋と西洋の相違点は何であろうか。
|
32 |
+
- その ほか に , “心霊 手術 師 ” が おり , この 人 たち は“ 心霊 手術 ” なる もの を
|
33 |
+
行ない ます。
|
34 |
+
- Numpy を import できない。
|
35 |
+
- source_sentence: Jesus Christ did surrender his life for the “sheep. ”
|
36 |
+
sentences:
|
37 |
+
- フィリポは読んでいる事柄が分かりますかと尋ねた。
|
38 |
+
- イエス ・ キリスト は ご自分 の 命 を「羊」の ため に 捨て まし た。
|
39 |
+
- 彼はこの金を中央政府には渡そうとしない。
|
40 |
+
pipeline_tag: sentence-similarity
|
41 |
+
library_name: sentence-transformers
|
42 |
+
metrics:
|
43 |
+
- pearson_cosine
|
44 |
+
- spearman_cosine
|
45 |
+
model-index:
|
46 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
47 |
+
results:
|
48 |
+
- task:
|
49 |
+
type: semantic-similarity
|
50 |
+
name: Semantic Similarity
|
51 |
+
dataset:
|
52 |
+
name: stsb multi mt en
|
53 |
+
type: stsb_multi_mt-en
|
54 |
+
metrics:
|
55 |
+
- type: pearson_cosine
|
56 |
+
value: 0.7988037559289333
|
57 |
+
name: Pearson Cosine
|
58 |
+
- type: spearman_cosine
|
59 |
+
value: 0.8009711557760016
|
60 |
+
name: Spearman Cosine
|
61 |
+
- task:
|
62 |
+
type: semantic-similarity
|
63 |
+
name: Semantic Similarity
|
64 |
+
dataset:
|
65 |
+
name: JSTS
|
66 |
+
type: JSTS
|
67 |
+
metrics:
|
68 |
+
- type: pearson_cosine
|
69 |
+
value: 0.8622404113206219
|
70 |
+
name: Pearson Cosine
|
71 |
+
- type: spearman_cosine
|
72 |
+
value: 0.8142666349859583
|
73 |
+
name: Spearman Cosine
|
74 |
+
---
|
75 |
+
|
76 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
|
77 |
+
|
78 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
79 |
+
|
80 |
+
## Model Details
|
81 |
+
|
82 |
+
### Model Description
|
83 |
+
- **Model Type:** Sentence Transformer
|
84 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
|
85 |
+
- **Maximum Sequence Length:** 128 tokens
|
86 |
+
- **Output Dimensionality:** 384 dimensions
|
87 |
+
- **Similarity Function:** Cosine Similarity
|
88 |
+
<!-- - **Training Dataset:** Unknown -->
|
89 |
+
<!-- - **Language:** Unknown -->
|
90 |
+
<!-- - **License:** Unknown -->
|
91 |
+
|
92 |
+
### Model Sources
|
93 |
+
|
94 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
95 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
96 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
97 |
+
|
98 |
+
### Full Model Architecture
|
99 |
+
|
100 |
+
```
|
101 |
+
SentenceTransformer(
|
102 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
103 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
104 |
+
(2): Normalize()
|
105 |
+
)
|
106 |
+
```
|
107 |
+
|
108 |
+
## Usage
|
109 |
+
|
110 |
+
### Direct Usage (Sentence Transformers)
|
111 |
+
|
112 |
+
First install the Sentence Transformers library:
|
113 |
+
|
114 |
+
```bash
|
115 |
+
pip install -U sentence-transformers
|
116 |
+
```
|
117 |
+
|
118 |
+
Then you can load this model and run inference.
|
119 |
+
```python
|
120 |
+
from sentence_transformers import SentenceTransformer
|
121 |
+
|
122 |
+
# Download from the 🤗 Hub
|
123 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
124 |
+
# Run inference
|
125 |
+
sentences = [
|
126 |
+
'Jesus Christ did surrender his life for the “sheep. ”',
|
127 |
+
'イエス \u200b ・ \u200b キリスト \u200b は \u200b ご自分 \u200b の \u200b 命 \u200b を「羊」の \u200b ため \u200b に \u200b 捨て \u200b まし \u200b た。',
|
128 |
+
'彼はこの金を中央政府には渡そうとしない。',
|
129 |
+
]
|
130 |
+
embeddings = model.encode(sentences)
|
131 |
+
print(embeddings.shape)
|
132 |
+
# [3, 384]
|
133 |
+
|
134 |
+
# Get the similarity scores for the embeddings
|
135 |
+
similarities = model.similarity(embeddings, embeddings)
|
136 |
+
print(similarities.shape)
|
137 |
+
# [3, 3]
|
138 |
+
```
|
139 |
+
|
140 |
+
<!--
|
141 |
+
### Direct Usage (Transformers)
|
142 |
+
|
143 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
144 |
+
|
145 |
+
</details>
|
146 |
+
-->
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Downstream Usage (Sentence Transformers)
|
150 |
+
|
151 |
+
You can finetune this model on your own dataset.
|
152 |
+
|
153 |
+
<details><summary>Click to expand</summary>
|
154 |
+
|
155 |
+
</details>
|
156 |
+
-->
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Out-of-Scope Use
|
160 |
+
|
161 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
162 |
+
-->
|
163 |
+
|
164 |
+
## Evaluation
|
165 |
+
|
166 |
+
### Metrics
|
167 |
+
|
168 |
+
#### Semantic Similarity
|
169 |
+
|
170 |
+
* Datasets: `stsb_multi_mt-en` and `JSTS`
|
171 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
172 |
+
|
173 |
+
| Metric | stsb_multi_mt-en | JSTS |
|
174 |
+
|:--------------------|:-----------------|:-----------|
|
175 |
+
| pearson_cosine | 0.7988 | 0.8622 |
|
176 |
+
| **spearman_cosine** | **0.801** | **0.8143** |
|
177 |
+
|
178 |
+
<!--
|
179 |
+
## Bias, Risks and Limitations
|
180 |
+
|
181 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
182 |
+
-->
|
183 |
+
|
184 |
+
<!--
|
185 |
+
### Recommendations
|
186 |
+
|
187 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
188 |
+
-->
|
189 |
+
|
190 |
+
## Training Details
|
191 |
+
|
192 |
+
### Training Dataset
|
193 |
+
|
194 |
+
#### Unnamed Dataset
|
195 |
+
|
196 |
+
|
197 |
+
* Size: 18,240,762 training samples
|
198 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
199 |
+
* Approximate statistics based on the first 1000 samples:
|
200 |
+
| | english | non_english | label |
|
201 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
202 |
+
| type | string | string | list |
|
203 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 15.99 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.59 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
|
204 |
+
* Samples:
|
205 |
+
| english | non_english | label |
|
206 |
+
|:-----------------------------------------------------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
|
207 |
+
| <code>Slow to Mars?</code> | <code>火星しばり?</code> | <code>[-0.1292940022648608, -0.1167307527589221, -0.008499974779641976, 0.04317784529767997, -0.06141806471633044, ...]</code> |
|
208 |
+
| <code>Sunset is nearly there.</code> | <code>サンクスはすぐそこだし。</code> | <code>[-0.1347740689698337, 0.053288680755846106, 0.014359346388162629, 0.0157641416547634, 0.0900218121125077, ...]</code> |
|
209 |
+
| <code>Why were these Christians put to death?</code> | <code>ハンガリー の 新聞「バシュ ・ ナーペ」は 次 の よう に 説明 し て い ます。「</code> | <code>[0.09746742956653999, -0.006846877375759926, -0.03973075126221857, 0.024986338940603363, -0.021140928354124164, ...]</code> |
|
210 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
211 |
+
|
212 |
+
### Evaluation Dataset
|
213 |
+
|
214 |
+
#### Unnamed Dataset
|
215 |
+
|
216 |
+
|
217 |
+
* Size: 184,251 evaluation samples
|
218 |
+
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code>
|
219 |
+
* Approximate statistics based on the first 1000 samples:
|
220 |
+
| | english | non_english | label |
|
221 |
+
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------|
|
222 |
+
| type | string | string | list |
|
223 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 16.16 tokens</li><li>max: 116 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 21.65 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 384 elements</li></ul> |
|
224 |
+
* Samples:
|
225 |
+
| english | non_english | label |
|
226 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
|
227 |
+
| <code>Back from donating?</code> | <code>ドーナツ回?</code> | <code>[-0.14056862827741115, -0.09391276023432168, 0.011405737148041988, 0.012085375305688852, -0.056379213184557624, ...]</code> |
|
228 |
+
| <code>134)Textbooks were also in short supply.</code> | <code>3)荷物の引き渡しも短時間にテキパキとされていました。</code> | <code>[0.04401202896633807, 0.07403046630916377, 0.11568493170920714, 0.047522982370575784, 0.1009405093401555, ...]</code> |
|
229 |
+
| <code>The COG investigators started the trial by providing dosages of crizotinib to their patients that were lower than those used in adults with NSCLC.</code> | <code>COG試験責任医師らは、NSCLCの成人患者で使用されている投与量より少ない量のcrizotinibを小児患者に提供することで試験を開始した。</code> | <code>[0.21476626448171793, -0.04704800523318936, 0.061019190603563075, 0.027317017405848458, -0.03788587912458321, ...]</code> |
|
230 |
+
* Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss)
|
231 |
+
|
232 |
+
### Training Hyperparameters
|
233 |
+
#### Non-Default Hyperparameters
|
234 |
+
|
235 |
+
- `eval_strategy`: steps
|
236 |
+
- `per_device_train_batch_size`: 512
|
237 |
+
- `per_device_eval_batch_size`: 512
|
238 |
+
- `gradient_accumulation_steps`: 2
|
239 |
+
- `learning_rate`: 0.0003
|
240 |
+
- `num_train_epochs`: 8
|
241 |
+
- `warmup_ratio`: 0.15
|
242 |
+
- `bf16`: True
|
243 |
+
- `dataloader_num_workers`: 8
|
244 |
+
|
245 |
+
#### All Hyperparameters
|
246 |
+
<details><summary>Click to expand</summary>
|
247 |
+
|
248 |
+
- `overwrite_output_dir`: False
|
249 |
+
- `do_predict`: False
|
250 |
+
- `eval_strategy`: steps
|
251 |
+
- `prediction_loss_only`: True
|
252 |
+
- `per_device_train_batch_size`: 512
|
253 |
+
- `per_device_eval_batch_size`: 512
|
254 |
+
- `per_gpu_train_batch_size`: None
|
255 |
+
- `per_gpu_eval_batch_size`: None
|
256 |
+
- `gradient_accumulation_steps`: 2
|
257 |
+
- `eval_accumulation_steps`: None
|
258 |
+
- `torch_empty_cache_steps`: None
|
259 |
+
- `learning_rate`: 0.0003
|
260 |
+
- `weight_decay`: 0.0
|
261 |
+
- `adam_beta1`: 0.9
|
262 |
+
- `adam_beta2`: 0.999
|
263 |
+
- `adam_epsilon`: 1e-08
|
264 |
+
- `max_grad_norm`: 1.0
|
265 |
+
- `num_train_epochs`: 8
|
266 |
+
- `max_steps`: -1
|
267 |
+
- `lr_scheduler_type`: linear
|
268 |
+
- `lr_scheduler_kwargs`: {}
|
269 |
+
- `warmup_ratio`: 0.15
|
270 |
+
- `warmup_steps`: 0
|
271 |
+
- `log_level`: passive
|
272 |
+
- `log_level_replica`: warning
|
273 |
+
- `log_on_each_node`: True
|
274 |
+
- `logging_nan_inf_filter`: True
|
275 |
+
- `save_safetensors`: True
|
276 |
+
- `save_on_each_node`: False
|
277 |
+
- `save_only_model`: False
|
278 |
+
- `restore_callback_states_from_checkpoint`: False
|
279 |
+
- `no_cuda`: False
|
280 |
+
- `use_cpu`: False
|
281 |
+
- `use_mps_device`: False
|
282 |
+
- `seed`: 42
|
283 |
+
- `data_seed`: None
|
284 |
+
- `jit_mode_eval`: False
|
285 |
+
- `use_ipex`: False
|
286 |
+
- `bf16`: True
|
287 |
+
- `fp16`: False
|
288 |
+
- `fp16_opt_level`: O1
|
289 |
+
- `half_precision_backend`: auto
|
290 |
+
- `bf16_full_eval`: False
|
291 |
+
- `fp16_full_eval`: False
|
292 |
+
- `tf32`: None
|
293 |
+
- `local_rank`: 0
|
294 |
+
- `ddp_backend`: None
|
295 |
+
- `tpu_num_cores`: None
|
296 |
+
- `tpu_metrics_debug`: False
|
297 |
+
- `debug`: []
|
298 |
+
- `dataloader_drop_last`: False
|
299 |
+
- `dataloader_num_workers`: 8
|
300 |
+
- `dataloader_prefetch_factor`: None
|
301 |
+
- `past_index`: -1
|
302 |
+
- `disable_tqdm`: False
|
303 |
+
- `remove_unused_columns`: True
|
304 |
+
- `label_names`: None
|
305 |
+
- `load_best_model_at_end`: False
|
306 |
+
- `ignore_data_skip`: False
|
307 |
+
- `fsdp`: []
|
308 |
+
- `fsdp_min_num_params`: 0
|
309 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
310 |
+
- `tp_size`: 0
|
311 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
312 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
313 |
+
- `deepspeed`: None
|
314 |
+
- `label_smoothing_factor`: 0.0
|
315 |
+
- `optim`: adamw_torch
|
316 |
+
- `optim_args`: None
|
317 |
+
- `adafactor`: False
|
318 |
+
- `group_by_length`: False
|
319 |
+
- `length_column_name`: length
|
320 |
+
- `ddp_find_unused_parameters`: None
|
321 |
+
- `ddp_bucket_cap_mb`: None
|
322 |
+
- `ddp_broadcast_buffers`: False
|
323 |
+
- `dataloader_pin_memory`: True
|
324 |
+
- `dataloader_persistent_workers`: False
|
325 |
+
- `skip_memory_metrics`: True
|
326 |
+
- `use_legacy_prediction_loop`: False
|
327 |
+
- `push_to_hub`: False
|
328 |
+
- `resume_from_checkpoint`: None
|
329 |
+
- `hub_model_id`: None
|
330 |
+
- `hub_strategy`: every_save
|
331 |
+
- `hub_private_repo`: None
|
332 |
+
- `hub_always_push`: False
|
333 |
+
- `gradient_checkpointing`: False
|
334 |
+
- `gradient_checkpointing_kwargs`: None
|
335 |
+
- `include_inputs_for_metrics`: False
|
336 |
+
- `include_for_metrics`: []
|
337 |
+
- `eval_do_concat_batches`: True
|
338 |
+
- `fp16_backend`: auto
|
339 |
+
- `push_to_hub_model_id`: None
|
340 |
+
- `push_to_hub_organization`: None
|
341 |
+
- `mp_parameters`:
|
342 |
+
- `auto_find_batch_size`: False
|
343 |
+
- `full_determinism`: False
|
344 |
+
- `torchdynamo`: None
|
345 |
+
- `ray_scope`: last
|
346 |
+
- `ddp_timeout`: 1800
|
347 |
+
- `torch_compile`: False
|
348 |
+
- `torch_compile_backend`: None
|
349 |
+
- `torch_compile_mode`: None
|
350 |
+
- `include_tokens_per_second`: False
|
351 |
+
- `include_num_input_tokens_seen`: False
|
352 |
+
- `neftune_noise_alpha`: None
|
353 |
+
- `optim_target_modules`: None
|
354 |
+
- `batch_eval_metrics`: False
|
355 |
+
- `eval_on_start`: False
|
356 |
+
- `use_liger_kernel`: False
|
357 |
+
- `eval_use_gather_object`: False
|
358 |
+
- `average_tokens_across_devices`: False
|
359 |
+
- `prompts`: None
|
360 |
+
- `batch_sampler`: batch_sampler
|
361 |
+
- `multi_dataset_batch_sampler`: proportional
|
362 |
+
|
363 |
+
</details>
|
364 |
+
|
365 |
+
### Training Logs
|
366 |
+
<details><summary>Click to expand</summary>
|
367 |
+
|
368 |
+
| Epoch | Step | Training Loss | Validation Loss | stsb_multi_mt-en_spearman_cosine | JSTS_spearman_cosine |
|
369 |
+
|:------:|:------:|:-------------:|:---------------:|:--------------------------------:|:--------------------:|
|
370 |
+
| 0.0281 | 500 | 0.0057 | - | - | - |
|
371 |
+
| 0.0561 | 1000 | 0.005 | - | - | - |
|
372 |
+
| 0.0842 | 1500 | 0.0047 | - | - | - |
|
373 |
+
| 0.1123 | 2000 | 0.0045 | 0.0022 | 0.2757 | 0.2805 |
|
374 |
+
| 0.1403 | 2500 | 0.0043 | - | - | - |
|
375 |
+
| 0.1684 | 3000 | 0.0042 | - | - | - |
|
376 |
+
| 0.1965 | 3500 | 0.004 | - | - | - |
|
377 |
+
| 0.2245 | 4000 | 0.0039 | 0.0019 | 0.4951 | 0.5122 |
|
378 |
+
| 0.2526 | 4500 | 0.0037 | - | - | - |
|
379 |
+
| 0.2807 | 5000 | 0.0036 | - | - | - |
|
380 |
+
| 0.3088 | 5500 | 0.0035 | - | - | - |
|
381 |
+
| 0.3368 | 6000 | 0.0034 | 0.0016 | 0.6060 | 0.6544 |
|
382 |
+
| 0.3649 | 6500 | 0.0033 | - | - | - |
|
383 |
+
| 0.3930 | 7000 | 0.0032 | - | - | - |
|
384 |
+
| 0.4210 | 7500 | 0.0032 | - | - | - |
|
385 |
+
| 0.4491 | 8000 | 0.0031 | 0.0015 | 0.6802 | 0.7234 |
|
386 |
+
| 0.4772 | 8500 | 0.003 | - | - | - |
|
387 |
+
| 0.5052 | 9000 | 0.003 | - | - | - |
|
388 |
+
| 0.5333 | 9500 | 0.003 | - | - | - |
|
389 |
+
| 0.5614 | 10000 | 0.0029 | 0.0014 | 0.7144 | 0.7537 |
|
390 |
+
| 0.5894 | 10500 | 0.0029 | - | - | - |
|
391 |
+
| 0.6175 | 11000 | 0.0029 | - | - | - |
|
392 |
+
| 0.6456 | 11500 | 0.0028 | - | - | - |
|
393 |
+
| 0.6736 | 12000 | 0.0028 | 0.0014 | 0.7260 | 0.7691 |
|
394 |
+
| 0.7017 | 12500 | 0.0028 | - | - | - |
|
395 |
+
| 0.7298 | 13000 | 0.0028 | - | - | - |
|
396 |
+
| 0.7579 | 13500 | 0.0027 | - | - | - |
|
397 |
+
| 0.7859 | 14000 | 0.0027 | 0.0013 | 0.7396 | 0.7751 |
|
398 |
+
| 0.8140 | 14500 | 0.0027 | - | - | - |
|
399 |
+
| 0.8421 | 15000 | 0.0027 | - | - | - |
|
400 |
+
| 0.8701 | 15500 | 0.0027 | - | - | - |
|
401 |
+
| 0.8982 | 16000 | 0.0027 | 0.0013 | 0.7499 | 0.7793 |
|
402 |
+
| 0.9263 | 16500 | 0.0027 | - | - | - |
|
403 |
+
| 0.9543 | 17000 | 0.0027 | - | - | - |
|
404 |
+
| 0.9824 | 17500 | 0.0026 | - | - | - |
|
405 |
+
| 1.0104 | 18000 | 0.0026 | 0.0013 | 0.7542 | 0.7847 |
|
406 |
+
| 1.0385 | 18500 | 0.0026 | - | - | - |
|
407 |
+
| 1.0666 | 19000 | 0.0026 | - | - | - |
|
408 |
+
| 1.0946 | 19500 | 0.0026 | - | - | - |
|
409 |
+
| 1.1227 | 20000 | 0.0026 | 0.0013 | 0.7685 | 0.7883 |
|
410 |
+
| 1.1508 | 20500 | 0.0026 | - | - | - |
|
411 |
+
| 1.1789 | 21000 | 0.0026 | - | - | - |
|
412 |
+
| 1.2069 | 21500 | 0.0026 | - | - | - |
|
413 |
+
| 1.2350 | 22000 | 0.0026 | 0.0012 | 0.7695 | 0.7916 |
|
414 |
+
| 1.2631 | 22500 | 0.0026 | - | - | - |
|
415 |
+
| 1.2911 | 23000 | 0.0026 | - | - | - |
|
416 |
+
| 1.3192 | 23500 | 0.0025 | - | - | - |
|
417 |
+
| 1.3473 | 24000 | 0.0025 | 0.0012 | 0.7698 | 0.7937 |
|
418 |
+
| 1.3753 | 24500 | 0.0025 | - | - | - |
|
419 |
+
| 1.4034 | 25000 | 0.0025 | - | - | - |
|
420 |
+
| 1.4315 | 25500 | 0.0025 | - | - | - |
|
421 |
+
| 1.4595 | 26000 | 0.0025 | 0.0012 | 0.7785 | 0.7951 |
|
422 |
+
| 1.4876 | 26500 | 0.0025 | - | - | - |
|
423 |
+
| 1.5157 | 27000 | 0.0025 | - | - | - |
|
424 |
+
| 1.5437 | 27500 | 0.0025 | - | - | - |
|
425 |
+
| 1.5718 | 28000 | 0.0025 | 0.0012 | 0.7798 | 0.7995 |
|
426 |
+
| 1.5999 | 28500 | 0.0025 | - | - | - |
|
427 |
+
| 1.6280 | 29000 | 0.0025 | - | - | - |
|
428 |
+
| 1.6560 | 29500 | 0.0025 | - | - | - |
|
429 |
+
| 1.6841 | 30000 | 0.0025 | 0.0012 | 0.7821 | 0.7985 |
|
430 |
+
| 1.7122 | 30500 | 0.0025 | - | - | - |
|
431 |
+
| 1.7402 | 31000 | 0.0025 | - | - | - |
|
432 |
+
| 1.7683 | 31500 | 0.0025 | - | - | - |
|
433 |
+
| 1.7964 | 32000 | 0.0025 | 0.0012 | 0.7860 | 0.7999 |
|
434 |
+
| 1.8244 | 32500 | 0.0025 | - | - | - |
|
435 |
+
| 1.8525 | 33000 | 0.0025 | - | - | - |
|
436 |
+
| 1.8806 | 33500 | 0.0025 | - | - | - |
|
437 |
+
| 1.9086 | 34000 | 0.0025 | 0.0012 | 0.7859 | 0.8009 |
|
438 |
+
| 1.9367 | 34500 | 0.0025 | - | - | - |
|
439 |
+
| 1.9648 | 35000 | 0.0025 | - | - | - |
|
440 |
+
| 1.9928 | 35500 | 0.0025 | - | - | - |
|
441 |
+
| 2.0209 | 36000 | 0.0025 | 0.0012 | 0.7840 | 0.8000 |
|
442 |
+
| 2.0490 | 36500 | 0.0025 | - | - | - |
|
443 |
+
| 2.0770 | 37000 | 0.0025 | - | - | - |
|
444 |
+
| 2.1051 | 37500 | 0.0025 | - | - | - |
|
445 |
+
| 2.1332 | 38000 | 0.0025 | 0.0012 | 0.7882 | 0.8029 |
|
446 |
+
| 2.1612 | 38500 | 0.0025 | - | - | - |
|
447 |
+
| 2.1893 | 39000 | 0.0025 | - | - | - |
|
448 |
+
| 2.2174 | 39500 | 0.0025 | - | - | - |
|
449 |
+
| 2.2454 | 40000 | 0.0025 | 0.0012 | 0.7867 | 0.8030 |
|
450 |
+
| 2.2735 | 40500 | 0.0025 | - | - | - |
|
451 |
+
| 2.3016 | 41000 | 0.0025 | - | - | - |
|
452 |
+
| 2.3296 | 41500 | 0.0025 | - | - | - |
|
453 |
+
| 2.3577 | 42000 | 0.0025 | 0.0012 | 0.7909 | 0.8044 |
|
454 |
+
| 2.3858 | 42500 | 0.0025 | - | - | - |
|
455 |
+
| 2.4138 | 43000 | 0.0025 | - | - | - |
|
456 |
+
| 2.4419 | 43500 | 0.0024 | - | - | - |
|
457 |
+
| 2.4700 | 44000 | 0.0024 | 0.0012 | 0.7925 | 0.8047 |
|
458 |
+
| 2.4980 | 44500 | 0.0024 | - | - | - |
|
459 |
+
| 2.5261 | 45000 | 0.0024 | - | - | - |
|
460 |
+
| 2.5542 | 45500 | 0.0024 | - | - | - |
|
461 |
+
| 2.5823 | 46000 | 0.0024 | 0.0012 | 0.7945 | 0.8081 |
|
462 |
+
| 2.6103 | 46500 | 0.0024 | - | - | - |
|
463 |
+
| 2.6384 | 47000 | 0.0024 | - | - | - |
|
464 |
+
| 2.6665 | 47500 | 0.0024 | - | - | - |
|
465 |
+
| 2.6945 | 48000 | 0.0024 | 0.0012 | 0.7918 | 0.8071 |
|
466 |
+
| 2.7226 | 48500 | 0.0024 | - | - | - |
|
467 |
+
| 2.7507 | 49000 | 0.0024 | - | - | - |
|
468 |
+
| 2.7787 | 49500 | 0.0024 | - | - | - |
|
469 |
+
| 2.8068 | 50000 | 0.0024 | 0.0012 | 0.7945 | 0.8063 |
|
470 |
+
| 2.8349 | 50500 | 0.0024 | - | - | - |
|
471 |
+
| 2.8629 | 51000 | 0.0024 | - | - | - |
|
472 |
+
| 2.8910 | 51500 | 0.0024 | - | - | - |
|
473 |
+
| 2.9191 | 52000 | 0.0024 | 0.0012 | 0.7930 | 0.8078 |
|
474 |
+
| 2.9471 | 52500 | 0.0024 | - | - | - |
|
475 |
+
| 2.9752 | 53000 | 0.0024 | - | - | - |
|
476 |
+
| 3.0033 | 53500 | 0.0024 | - | - | - |
|
477 |
+
| 3.0313 | 54000 | 0.0024 | 0.0012 | 0.7947 | 0.8071 |
|
478 |
+
| 3.0594 | 54500 | 0.0024 | - | - | - |
|
479 |
+
| 3.0875 | 55000 | 0.0024 | - | - | - |
|
480 |
+
| 3.1155 | 55500 | 0.0024 | - | - | - |
|
481 |
+
| 3.1436 | 56000 | 0.0024 | 0.0012 | 0.7955 | 0.8077 |
|
482 |
+
| 3.1717 | 56500 | 0.0024 | - | - | - |
|
483 |
+
| 3.1997 | 57000 | 0.0024 | - | - | - |
|
484 |
+
| 3.2278 | 57500 | 0.0024 | - | - | - |
|
485 |
+
| 3.2559 | 58000 | 0.0024 | 0.0012 | 0.7969 | 0.8083 |
|
486 |
+
| 3.2839 | 58500 | 0.0024 | - | - | - |
|
487 |
+
| 3.3120 | 59000 | 0.0024 | - | - | - |
|
488 |
+
| 3.3401 | 59500 | 0.0024 | - | - | - |
|
489 |
+
| 3.3681 | 60000 | 0.0024 | 0.0012 | 0.7916 | 0.8089 |
|
490 |
+
| 3.3962 | 60500 | 0.0024 | - | - | - |
|
491 |
+
| 3.4243 | 61000 | 0.0024 | - | - | - |
|
492 |
+
| 3.4524 | 61500 | 0.0024 | - | - | - |
|
493 |
+
| 3.4804 | 62000 | 0.0024 | 0.0012 | 0.7941 | 0.8092 |
|
494 |
+
| 3.5085 | 62500 | 0.0024 | - | - | - |
|
495 |
+
| 3.5366 | 63000 | 0.0024 | - | - | - |
|
496 |
+
| 3.5646 | 63500 | 0.0024 | - | - | - |
|
497 |
+
| 3.5927 | 64000 | 0.0024 | 0.0012 | 0.7966 | 0.8112 |
|
498 |
+
| 3.6208 | 64500 | 0.0024 | - | - | - |
|
499 |
+
| 3.6488 | 65000 | 0.0024 | - | - | - |
|
500 |
+
| 3.6769 | 65500 | 0.0024 | - | - | - |
|
501 |
+
| 3.7050 | 66000 | 0.0024 | 0.0012 | 0.7957 | 0.8088 |
|
502 |
+
| 3.7330 | 66500 | 0.0024 | - | - | - |
|
503 |
+
| 3.7611 | 67000 | 0.0024 | - | - | - |
|
504 |
+
| 3.7892 | 67500 | 0.0024 | - | - | - |
|
505 |
+
| 3.8172 | 68000 | 0.0024 | 0.0012 | 0.7965 | 0.8104 |
|
506 |
+
| 3.8453 | 68500 | 0.0024 | - | - | - |
|
507 |
+
| 3.8734 | 69000 | 0.0024 | - | - | - |
|
508 |
+
| 3.9015 | 69500 | 0.0024 | - | - | - |
|
509 |
+
| 3.9295 | 70000 | 0.0024 | 0.0012 | 0.7948 | 0.8101 |
|
510 |
+
| 3.9576 | 70500 | 0.0024 | - | - | - |
|
511 |
+
| 3.9857 | 71000 | 0.0024 | - | - | - |
|
512 |
+
| 4.0137 | 71500 | 0.0024 | - | - | - |
|
513 |
+
| 4.0418 | 72000 | 0.0024 | 0.0012 | 0.7985 | 0.8129 |
|
514 |
+
| 4.0698 | 72500 | 0.0024 | - | - | - |
|
515 |
+
| 4.0979 | 73000 | 0.0024 | - | - | - |
|
516 |
+
| 4.1260 | 73500 | 0.0024 | - | - | - |
|
517 |
+
| 4.1540 | 74000 | 0.0024 | 0.0012 | 0.7964 | 0.8114 |
|
518 |
+
| 4.1821 | 74500 | 0.0024 | - | - | - |
|
519 |
+
| 4.2102 | 75000 | 0.0024 | - | - | - |
|
520 |
+
| 4.2382 | 75500 | 0.0024 | - | - | - |
|
521 |
+
| 4.2663 | 76000 | 0.0024 | 0.0012 | 0.7964 | 0.8105 |
|
522 |
+
| 4.2944 | 76500 | 0.0024 | - | - | - |
|
523 |
+
| 4.3225 | 77000 | 0.0024 | - | - | - |
|
524 |
+
| 4.3505 | 77500 | 0.0024 | - | - | - |
|
525 |
+
| 4.3786 | 78000 | 0.0024 | 0.0012 | 0.7975 | 0.8110 |
|
526 |
+
| 4.4067 | 78500 | 0.0024 | - | - | - |
|
527 |
+
| 4.4347 | 79000 | 0.0024 | - | - | - |
|
528 |
+
| 4.4628 | 79500 | 0.0024 | - | - | - |
|
529 |
+
| 4.4909 | 80000 | 0.0024 | 0.0012 | 0.7959 | 0.8113 |
|
530 |
+
| 4.5189 | 80500 | 0.0024 | - | - | - |
|
531 |
+
| 4.5470 | 81000 | 0.0024 | - | - | - |
|
532 |
+
| 4.5751 | 81500 | 0.0024 | - | - | - |
|
533 |
+
| 4.6031 | 82000 | 0.0024 | 0.0012 | 0.7979 | 0.8119 |
|
534 |
+
| 4.6312 | 82500 | 0.0024 | - | - | - |
|
535 |
+
| 4.6593 | 83000 | 0.0024 | - | - | - |
|
536 |
+
| 4.6873 | 83500 | 0.0024 | - | - | - |
|
537 |
+
| 4.7154 | 84000 | 0.0024 | 0.0012 | 0.7980 | 0.8123 |
|
538 |
+
| 4.7435 | 84500 | 0.0024 | - | - | - |
|
539 |
+
| 4.7715 | 85000 | 0.0024 | - | - | - |
|
540 |
+
| 4.7996 | 85500 | 0.0024 | - | - | - |
|
541 |
+
| 4.8277 | 86000 | 0.0024 | 0.0012 | 0.7963 | 0.8118 |
|
542 |
+
| 4.8558 | 86500 | 0.0024 | - | - | - |
|
543 |
+
| 4.8838 | 87000 | 0.0024 | - | - | - |
|
544 |
+
| 4.9119 | 87500 | 0.0024 | - | - | - |
|
545 |
+
| 4.9400 | 88000 | 0.0024 | 0.0012 | 0.7986 | 0.8126 |
|
546 |
+
| 4.9680 | 88500 | 0.0024 | - | - | - |
|
547 |
+
| 4.9961 | 89000 | 0.0024 | - | - | - |
|
548 |
+
| 5.0241 | 89500 | 0.0024 | - | - | - |
|
549 |
+
| 5.0522 | 90000 | 0.0024 | 0.0012 | 0.7994 | 0.8121 |
|
550 |
+
| 5.0803 | 90500 | 0.0024 | - | - | - |
|
551 |
+
| 5.1083 | 91000 | 0.0024 | - | - | - |
|
552 |
+
| 5.1364 | 91500 | 0.0024 | - | - | - |
|
553 |
+
| 5.1645 | 92000 | 0.0024 | 0.0012 | 0.7973 | 0.8120 |
|
554 |
+
| 5.1926 | 92500 | 0.0024 | - | - | - |
|
555 |
+
| 5.2206 | 93000 | 0.0024 | - | - | - |
|
556 |
+
| 5.2487 | 93500 | 0.0024 | - | - | - |
|
557 |
+
| 5.2768 | 94000 | 0.0024 | 0.0012 | 0.7970 | 0.8123 |
|
558 |
+
| 5.3048 | 94500 | 0.0024 | - | - | - |
|
559 |
+
| 5.3329 | 95000 | 0.0024 | - | - | - |
|
560 |
+
| 5.3610 | 95500 | 0.0024 | - | - | - |
|
561 |
+
| 5.3890 | 96000 | 0.0024 | 0.0012 | 0.7997 | 0.8126 |
|
562 |
+
| 5.4171 | 96500 | 0.0024 | - | - | - |
|
563 |
+
| 5.4452 | 97000 | 0.0024 | - | - | - |
|
564 |
+
| 5.4732 | 97500 | 0.0024 | - | - | - |
|
565 |
+
| 5.5013 | 98000 | 0.0024 | 0.0012 | 0.7957 | 0.8114 |
|
566 |
+
| 5.5294 | 98500 | 0.0024 | - | - | - |
|
567 |
+
| 5.5574 | 99000 | 0.0024 | - | - | - |
|
568 |
+
| 5.5855 | 99500 | 0.0024 | - | - | - |
|
569 |
+
| 5.6136 | 100000 | 0.0024 | 0.0012 | 0.7980 | 0.8132 |
|
570 |
+
| 5.6416 | 100500 | 0.0024 | - | - | - |
|
571 |
+
| 5.6697 | 101000 | 0.0024 | - | - | - |
|
572 |
+
| 5.6978 | 101500 | 0.0024 | - | - | - |
|
573 |
+
| 5.7259 | 102000 | 0.0024 | 0.0012 | 0.7984 | 0.8138 |
|
574 |
+
| 5.7539 | 102500 | 0.0024 | - | - | - |
|
575 |
+
| 5.7820 | 103000 | 0.0024 | - | - | - |
|
576 |
+
| 5.8101 | 103500 | 0.0024 | - | - | - |
|
577 |
+
| 5.8381 | 104000 | 0.0024 | 0.0012 | 0.7998 | 0.8134 |
|
578 |
+
| 5.8662 | 104500 | 0.0024 | - | - | - |
|
579 |
+
| 5.8943 | 105000 | 0.0024 | - | - | - |
|
580 |
+
| 5.9223 | 105500 | 0.0024 | - | - | - |
|
581 |
+
| 5.9504 | 106000 | 0.0024 | 0.0012 | 0.8013 | 0.8124 |
|
582 |
+
| 5.9785 | 106500 | 0.0024 | - | - | - |
|
583 |
+
| 6.0065 | 107000 | 0.0024 | - | - | - |
|
584 |
+
| 6.0346 | 107500 | 0.0024 | - | - | - |
|
585 |
+
| 6.0626 | 108000 | 0.0024 | 0.0012 | 0.7987 | 0.8134 |
|
586 |
+
| 6.0907 | 108500 | 0.0024 | - | - | - |
|
587 |
+
| 6.1188 | 109000 | 0.0024 | - | - | - |
|
588 |
+
| 6.1469 | 109500 | 0.0024 | - | - | - |
|
589 |
+
| 6.1749 | 110000 | 0.0024 | 0.0012 | 0.7986 | 0.8127 |
|
590 |
+
| 6.2030 | 110500 | 0.0024 | - | - | - |
|
591 |
+
| 6.2311 | 111000 | 0.0024 | - | - | - |
|
592 |
+
| 6.2591 | 111500 | 0.0024 | - | - | - |
|
593 |
+
| 6.2872 | 112000 | 0.0024 | 0.0012 | 0.7980 | 0.8128 |
|
594 |
+
| 6.3153 | 112500 | 0.0024 | - | - | - |
|
595 |
+
| 6.3433 | 113000 | 0.0024 | - | - | - |
|
596 |
+
| 6.3714 | 113500 | 0.0024 | - | - | - |
|
597 |
+
| 6.3995 | 114000 | 0.0024 | 0.0012 | 0.7980 | 0.8137 |
|
598 |
+
| 6.4275 | 114500 | 0.0024 | - | - | - |
|
599 |
+
| 6.4556 | 115000 | 0.0024 | - | - | - |
|
600 |
+
| 6.4837 | 115500 | 0.0024 | - | - | - |
|
601 |
+
| 6.5117 | 116000 | 0.0024 | 0.0012 | 0.7988 | 0.8129 |
|
602 |
+
| 6.5398 | 116500 | 0.0024 | - | - | - |
|
603 |
+
| 6.5679 | 117000 | 0.0024 | - | - | - |
|
604 |
+
| 6.5960 | 117500 | 0.0024 | - | - | - |
|
605 |
+
| 6.6240 | 118000 | 0.0024 | 0.0012 | 0.8007 | 0.8138 |
|
606 |
+
| 6.6521 | 118500 | 0.0024 | - | - | - |
|
607 |
+
| 6.6802 | 119000 | 0.0024 | - | - | - |
|
608 |
+
| 6.7082 | 119500 | 0.0024 | - | - | - |
|
609 |
+
| 6.7363 | 120000 | 0.0024 | 0.0012 | 0.8019 | 0.8143 |
|
610 |
+
| 6.7644 | 120500 | 0.0024 | - | - | - |
|
611 |
+
| 6.7924 | 121000 | 0.0024 | - | - | - |
|
612 |
+
| 6.8205 | 121500 | 0.0024 | - | - | - |
|
613 |
+
| 6.8486 | 122000 | 0.0024 | 0.0012 | 0.7980 | 0.8137 |
|
614 |
+
| 6.8766 | 122500 | 0.0024 | - | - | - |
|
615 |
+
| 6.9047 | 123000 | 0.0024 | - | - | - |
|
616 |
+
| 6.9328 | 123500 | 0.0024 | - | - | - |
|
617 |
+
| 6.9608 | 124000 | 0.0024 | 0.0012 | 0.8028 | 0.8142 |
|
618 |
+
| 6.9889 | 124500 | 0.0024 | - | - | - |
|
619 |
+
| 7.0170 | 125000 | 0.0024 | - | - | - |
|
620 |
+
| 7.0450 | 125500 | 0.0024 | - | - | - |
|
621 |
+
| 7.0731 | 126000 | 0.0024 | 0.0012 | 0.8002 | 0.8132 |
|
622 |
+
| 7.1012 | 126500 | 0.0024 | - | - | - |
|
623 |
+
| 7.1292 | 127000 | 0.0024 | - | - | - |
|
624 |
+
| 7.1573 | 127500 | 0.0024 | - | - | - |
|
625 |
+
| 7.1854 | 128000 | 0.0024 | 0.0012 | 0.8008 | 0.8137 |
|
626 |
+
| 7.2134 | 128500 | 0.0024 | - | - | - |
|
627 |
+
| 7.2415 | 129000 | 0.0024 | - | - | - |
|
628 |
+
| 7.2696 | 129500 | 0.0024 | - | - | - |
|
629 |
+
| 7.2976 | 130000 | 0.0024 | 0.0012 | 0.8005 | 0.8138 |
|
630 |
+
| 7.3257 | 130500 | 0.0024 | - | - | - |
|
631 |
+
| 7.3538 | 131000 | 0.0024 | - | - | - |
|
632 |
+
| 7.3818 | 131500 | 0.0024 | - | - | - |
|
633 |
+
| 7.4099 | 132000 | 0.0024 | 0.0012 | 0.7995 | 0.8140 |
|
634 |
+
| 7.4380 | 132500 | 0.0024 | - | - | - |
|
635 |
+
| 7.4661 | 133000 | 0.0024 | - | - | - |
|
636 |
+
| 7.4941 | 133500 | 0.0024 | - | - | - |
|
637 |
+
| 7.5222 | 134000 | 0.0024 | 0.0012 | 0.7999 | 0.8142 |
|
638 |
+
| 7.5503 | 134500 | 0.0024 | - | - | - |
|
639 |
+
| 7.5783 | 135000 | 0.0024 | - | - | - |
|
640 |
+
| 7.6064 | 135500 | 0.0024 | - | - | - |
|
641 |
+
| 7.6345 | 136000 | 0.0024 | 0.0012 | 0.8011 | 0.8138 |
|
642 |
+
| 7.6625 | 136500 | 0.0024 | - | - | - |
|
643 |
+
| 7.6906 | 137000 | 0.0024 | - | - | - |
|
644 |
+
| 7.7187 | 137500 | 0.0024 | - | - | - |
|
645 |
+
| 7.7467 | 138000 | 0.0024 | 0.0012 | 0.8015 | 0.8142 |
|
646 |
+
| 7.7748 | 138500 | 0.0024 | - | - | - |
|
647 |
+
| 7.8029 | 139000 | 0.0024 | - | - | - |
|
648 |
+
| 7.8309 | 139500 | 0.0024 | - | - | - |
|
649 |
+
| 7.8590 | 140000 | 0.0024 | 0.0012 | 0.8007 | 0.8141 |
|
650 |
+
| 7.8871 | 140500 | 0.0024 | - | - | - |
|
651 |
+
| 7.9151 | 141000 | 0.0024 | - | - | - |
|
652 |
+
| 7.9432 | 141500 | 0.0024 | - | - | - |
|
653 |
+
| 7.9713 | 142000 | 0.0024 | 0.0012 | 0.8010 | 0.8143 |
|
654 |
+
| 7.9994 | 142500 | 0.0024 | - | - | - |
|
655 |
+
|
656 |
+
</details>
|
657 |
+
|
658 |
+
### Framework Versions
|
659 |
+
- Python: 3.10.16
|
660 |
+
- Sentence Transformers: 3.3.1
|
661 |
+
- Transformers: 4.51.3
|
662 |
+
- PyTorch: 2.5.1+cu124
|
663 |
+
- Accelerate: 1.2.1
|
664 |
+
- Datasets: 3.2.0
|
665 |
+
- Tokenizers: 0.21.1
|
666 |
+
|
667 |
+
## Citation
|
668 |
+
|
669 |
+
### BibTeX
|
670 |
+
|
671 |
+
#### Sentence Transformers
|
672 |
+
```bibtex
|
673 |
+
@inproceedings{reimers-2019-sentence-bert,
|
674 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
675 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
676 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
677 |
+
month = "11",
|
678 |
+
year = "2019",
|
679 |
+
publisher = "Association for Computational Linguistics",
|
680 |
+
url = "https://arxiv.org/abs/1908.10084",
|
681 |
+
}
|
682 |
+
```
|
683 |
+
|
684 |
+
#### MSELoss
|
685 |
+
```bibtex
|
686 |
+
@inproceedings{reimers-2020-multilingual-sentence-bert,
|
687 |
+
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
|
688 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
689 |
+
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
|
690 |
+
month = "11",
|
691 |
+
year = "2020",
|
692 |
+
publisher = "Association for Computational Linguistics",
|
693 |
+
url = "https://arxiv.org/abs/2004.09813",
|
694 |
+
}
|
695 |
+
```
|
696 |
+
|
697 |
+
<!--
|
698 |
+
## Glossary
|
699 |
+
|
700 |
+
*Clearly define terms in order to be accessible across audiences.*
|
701 |
+
-->
|
702 |
+
|
703 |
+
<!--
|
704 |
+
## Model Card Authors
|
705 |
+
|
706 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
707 |
+
-->
|
708 |
+
|
709 |
+
<!--
|
710 |
+
## Model Card Contact
|
711 |
+
|
712 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
713 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 6,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.51.3",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 80000
|
25 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c950ef5954184e6208a0fca3b09119216f6a100ce0249257a25610289cfe6c1a
|
3 |
+
size 166862600
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6909870f516db78744bd7d0c274bc29a6f732c7db0242d585ba05fd0a59f5d96
|
3 |
+
size 332604218
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:366f3f326c9e515657aecaeccf4114b3a9148add41cfc367eadbec9568777cec
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76eaf6c34ec06064ae51acdd7a19cb0ec0dbea77dbd311d0519eda428ad21e4c
|
3 |
+
size 1064
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3023 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 7.999578971005136,
|
3 |
+
"global_step": 142504,
|
4 |
+
"max_steps": 142504,
|
5 |
+
"logging_steps": 500,
|
6 |
+
"eval_steps": 2000,
|
7 |
+
"save_steps": 2000,
|
8 |
+
"train_batch_size": 512,
|
9 |
+
"num_train_epochs": 8,
|
10 |
+
"num_input_tokens_seen": 0,
|
11 |
+
"total_flos": 0.0,
|
12 |
+
"log_history": [
|
13 |
+
{
|
14 |
+
"loss": 0.0057,
|
15 |
+
"grad_norm": 0.0016098980559036136,
|
16 |
+
"learning_rate": 7.003181137724551e-06,
|
17 |
+
"epoch": 0.028068599657563083,
|
18 |
+
"step": 500
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"loss": 0.005,
|
22 |
+
"grad_norm": 0.0015317167853936553,
|
23 |
+
"learning_rate": 1.4020396706586825e-05,
|
24 |
+
"epoch": 0.05613719931512617,
|
25 |
+
"step": 1000
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"loss": 0.0047,
|
29 |
+
"grad_norm": 0.0015495802508667111,
|
30 |
+
"learning_rate": 2.10376122754491e-05,
|
31 |
+
"epoch": 0.08420579897268925,
|
32 |
+
"step": 1500
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"loss": 0.0045,
|
36 |
+
"grad_norm": 0.0022075821179896593,
|
37 |
+
"learning_rate": 2.8054827844311374e-05,
|
38 |
+
"epoch": 0.11227439863025233,
|
39 |
+
"step": 2000
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"eval_loss": 0.002180776558816433,
|
43 |
+
"eval_evaluator_0": 0.0022395828273147345,
|
44 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.22815565384644398,
|
45 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.275689274915755,
|
46 |
+
"eval_JSTS_pearson_cosine": 0.24988924562808074,
|
47 |
+
"eval_JSTS_spearman_cosine": 0.28046156141859135,
|
48 |
+
"eval_sequential_score": 0.1861301397205537,
|
49 |
+
"eval_runtime": 73.4592,
|
50 |
+
"eval_samples_per_second": 2508.207,
|
51 |
+
"eval_steps_per_second": 4.901,
|
52 |
+
"epoch": 0.11227439863025233,
|
53 |
+
"step": 2000
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"loss": 0.0043,
|
57 |
+
"grad_norm": 0.001968657597899437,
|
58 |
+
"learning_rate": 3.507204341317365e-05,
|
59 |
+
"epoch": 0.14034299828781543,
|
60 |
+
"step": 2500
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"loss": 0.0042,
|
64 |
+
"grad_norm": 0.0018094776896759868,
|
65 |
+
"learning_rate": 4.208925898203593e-05,
|
66 |
+
"epoch": 0.1684115979453785,
|
67 |
+
"step": 3000
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"loss": 0.004,
|
71 |
+
"grad_norm": 0.0013906272361055017,
|
72 |
+
"learning_rate": 4.91064745508982e-05,
|
73 |
+
"epoch": 0.19648019760294158,
|
74 |
+
"step": 3500
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"loss": 0.0039,
|
78 |
+
"grad_norm": 0.001428323332220316,
|
79 |
+
"learning_rate": 5.6123690119760476e-05,
|
80 |
+
"epoch": 0.22454879726050467,
|
81 |
+
"step": 4000
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"eval_loss": 0.0018520376179367304,
|
85 |
+
"eval_evaluator_0": 0.0019462420605123043,
|
86 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.4499110986328231,
|
87 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.49510970494174,
|
88 |
+
"eval_JSTS_pearson_cosine": 0.5097291615839368,
|
89 |
+
"eval_JSTS_spearman_cosine": 0.5122442820292972,
|
90 |
+
"eval_sequential_score": 0.3364334096771831,
|
91 |
+
"eval_runtime": 83.3187,
|
92 |
+
"eval_samples_per_second": 2211.401,
|
93 |
+
"eval_steps_per_second": 4.321,
|
94 |
+
"epoch": 0.22454879726050467,
|
95 |
+
"step": 4000
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"loss": 0.0037,
|
99 |
+
"grad_norm": 0.0012093083932995796,
|
100 |
+
"learning_rate": 6.314090568862275e-05,
|
101 |
+
"epoch": 0.2526173969180678,
|
102 |
+
"step": 4500
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"loss": 0.0036,
|
106 |
+
"grad_norm": 0.0011754471343010664,
|
107 |
+
"learning_rate": 7.015812125748502e-05,
|
108 |
+
"epoch": 0.28068599657563087,
|
109 |
+
"step": 5000
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"loss": 0.0035,
|
113 |
+
"grad_norm": 0.001201385515742004,
|
114 |
+
"learning_rate": 7.71753368263473e-05,
|
115 |
+
"epoch": 0.3087545962331939,
|
116 |
+
"step": 5500
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"loss": 0.0034,
|
120 |
+
"grad_norm": 0.001142949447967112,
|
121 |
+
"learning_rate": 8.419255239520957e-05,
|
122 |
+
"epoch": 0.336823195890757,
|
123 |
+
"step": 6000
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"eval_loss": 0.0016247672028839588,
|
127 |
+
"eval_evaluator_0": 0.0017547985771670938,
|
128 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.6065087781362954,
|
129 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.6059881699518793,
|
130 |
+
"eval_JSTS_pearson_cosine": 0.675813930035037,
|
131 |
+
"eval_JSTS_spearman_cosine": 0.6543515532700886,
|
132 |
+
"eval_sequential_score": 0.42069817393304504,
|
133 |
+
"eval_runtime": 80.7633,
|
134 |
+
"eval_samples_per_second": 2281.371,
|
135 |
+
"eval_steps_per_second": 4.457,
|
136 |
+
"epoch": 0.336823195890757,
|
137 |
+
"step": 6000
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"loss": 0.0033,
|
141 |
+
"grad_norm": 0.0012169757392257452,
|
142 |
+
"learning_rate": 9.120976796407185e-05,
|
143 |
+
"epoch": 0.3648917955483201,
|
144 |
+
"step": 6500
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"loss": 0.0032,
|
148 |
+
"grad_norm": 0.000984999118372798,
|
149 |
+
"learning_rate": 9.822698353293412e-05,
|
150 |
+
"epoch": 0.39296039520588316,
|
151 |
+
"step": 7000
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"loss": 0.0032,
|
155 |
+
"grad_norm": 0.0008541549323126674,
|
156 |
+
"learning_rate": 0.0001052441991017964,
|
157 |
+
"epoch": 0.42102899486344625,
|
158 |
+
"step": 7500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"loss": 0.0031,
|
162 |
+
"grad_norm": 0.0012339747045189142,
|
163 |
+
"learning_rate": 0.00011226141467065867,
|
164 |
+
"epoch": 0.44909759452100934,
|
165 |
+
"step": 8000
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"eval_loss": 0.0014834599569439888,
|
169 |
+
"eval_evaluator_0": 0.0016358010470867157,
|
170 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.6856139415411606,
|
171 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.6802098455846184,
|
172 |
+
"eval_JSTS_pearson_cosine": 0.7611066837119786,
|
173 |
+
"eval_JSTS_spearman_cosine": 0.7233990218403792,
|
174 |
+
"eval_sequential_score": 0.46841488949069476,
|
175 |
+
"eval_runtime": 82.9975,
|
176 |
+
"eval_samples_per_second": 2219.96,
|
177 |
+
"eval_steps_per_second": 4.337,
|
178 |
+
"epoch": 0.44909759452100934,
|
179 |
+
"step": 8000
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"loss": 0.003,
|
183 |
+
"grad_norm": 0.0011975348461419344,
|
184 |
+
"learning_rate": 0.00011927863023952095,
|
185 |
+
"epoch": 0.4771661941785724,
|
186 |
+
"step": 8500
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"loss": 0.003,
|
190 |
+
"grad_norm": 0.0008851690217852592,
|
191 |
+
"learning_rate": 0.00012629584580838322,
|
192 |
+
"epoch": 0.5052347938361356,
|
193 |
+
"step": 9000
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"loss": 0.003,
|
197 |
+
"grad_norm": 0.0007472793222405016,
|
198 |
+
"learning_rate": 0.0001333130613772455,
|
199 |
+
"epoch": 0.5333033934936986,
|
200 |
+
"step": 9500
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"loss": 0.0029,
|
204 |
+
"grad_norm": 0.0007375231361947954,
|
205 |
+
"learning_rate": 0.00014033027694610776,
|
206 |
+
"epoch": 0.5613719931512617,
|
207 |
+
"step": 10000
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"eval_loss": 0.0014046069700270891,
|
211 |
+
"eval_evaluator_0": 0.0015687322011217475,
|
212 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.719395051149917,
|
213 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7143717274119371,
|
214 |
+
"eval_JSTS_pearson_cosine": 0.7959507802550232,
|
215 |
+
"eval_JSTS_spearman_cosine": 0.7536892647020201,
|
216 |
+
"eval_sequential_score": 0.48987657477169294,
|
217 |
+
"eval_runtime": 82.4721,
|
218 |
+
"eval_samples_per_second": 2234.101,
|
219 |
+
"eval_steps_per_second": 4.365,
|
220 |
+
"epoch": 0.5613719931512617,
|
221 |
+
"step": 10000
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"loss": 0.0029,
|
225 |
+
"grad_norm": 0.0006650229915976524,
|
226 |
+
"learning_rate": 0.00014734749251497006,
|
227 |
+
"epoch": 0.5894405928088248,
|
228 |
+
"step": 10500
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"loss": 0.0029,
|
232 |
+
"grad_norm": 0.0006891472148708999,
|
233 |
+
"learning_rate": 0.00015436470808383233,
|
234 |
+
"epoch": 0.6175091924663878,
|
235 |
+
"step": 11000
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"loss": 0.0028,
|
239 |
+
"grad_norm": 0.0007127522258087993,
|
240 |
+
"learning_rate": 0.0001613819236526946,
|
241 |
+
"epoch": 0.6455777921239509,
|
242 |
+
"step": 11500
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"loss": 0.0028,
|
246 |
+
"grad_norm": 0.0006974066491238773,
|
247 |
+
"learning_rate": 0.00016839913922155688,
|
248 |
+
"epoch": 0.673646391781514,
|
249 |
+
"step": 12000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"eval_loss": 0.0013544464018195868,
|
253 |
+
"eval_evaluator_0": 0.001526530017144978,
|
254 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.732440031968934,
|
255 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7259782924564794,
|
256 |
+
"eval_JSTS_pearson_cosine": 0.81524683780267,
|
257 |
+
"eval_JSTS_spearman_cosine": 0.7690769793502338,
|
258 |
+
"eval_sequential_score": 0.49886060060795273,
|
259 |
+
"eval_runtime": 81.4058,
|
260 |
+
"eval_samples_per_second": 2263.365,
|
261 |
+
"eval_steps_per_second": 4.422,
|
262 |
+
"epoch": 0.673646391781514,
|
263 |
+
"step": 12000
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"loss": 0.0028,
|
267 |
+
"grad_norm": 0.0007144405390135944,
|
268 |
+
"learning_rate": 0.00017541635479041915,
|
269 |
+
"epoch": 0.7017149914390771,
|
270 |
+
"step": 12500
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"loss": 0.0028,
|
274 |
+
"grad_norm": 0.0006135280709713697,
|
275 |
+
"learning_rate": 0.00018243357035928144,
|
276 |
+
"epoch": 0.7297835910966401,
|
277 |
+
"step": 13000
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"loss": 0.0027,
|
281 |
+
"grad_norm": 0.0006482451572082937,
|
282 |
+
"learning_rate": 0.0001894507859281437,
|
283 |
+
"epoch": 0.7578521907542033,
|
284 |
+
"step": 13500
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"loss": 0.0027,
|
288 |
+
"grad_norm": 0.0006131622940301895,
|
289 |
+
"learning_rate": 0.00019646800149700596,
|
290 |
+
"epoch": 0.7859207904117663,
|
291 |
+
"step": 14000
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"eval_loss": 0.0013185555581003428,
|
295 |
+
"eval_evaluator_0": 0.0014964122092351317,
|
296 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7428962880442835,
|
297 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7396057152300574,
|
298 |
+
"eval_JSTS_pearson_cosine": 0.8212214202225949,
|
299 |
+
"eval_JSTS_spearman_cosine": 0.7750900705329776,
|
300 |
+
"eval_sequential_score": 0.50539739932409,
|
301 |
+
"eval_runtime": 78.3836,
|
302 |
+
"eval_samples_per_second": 2350.632,
|
303 |
+
"eval_steps_per_second": 4.593,
|
304 |
+
"epoch": 0.7859207904117663,
|
305 |
+
"step": 14000
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"loss": 0.0027,
|
309 |
+
"grad_norm": 0.0006473588873632252,
|
310 |
+
"learning_rate": 0.00020348521706586823,
|
311 |
+
"epoch": 0.8139893900693295,
|
312 |
+
"step": 14500
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"loss": 0.0027,
|
316 |
+
"grad_norm": 0.000711853732354939,
|
317 |
+
"learning_rate": 0.00021050243263473053,
|
318 |
+
"epoch": 0.8420579897268925,
|
319 |
+
"step": 15000
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"loss": 0.0027,
|
323 |
+
"grad_norm": 0.0005788441631011665,
|
324 |
+
"learning_rate": 0.0002175196482035928,
|
325 |
+
"epoch": 0.8701265893844556,
|
326 |
+
"step": 15500
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"loss": 0.0027,
|
330 |
+
"grad_norm": 0.0005827408167533576,
|
331 |
+
"learning_rate": 0.00022453686377245507,
|
332 |
+
"epoch": 0.8981951890420187,
|
333 |
+
"step": 16000
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"eval_loss": 0.001293691573664546,
|
337 |
+
"eval_evaluator_0": 0.0014756449963897467,
|
338 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7525848141469997,
|
339 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7499182070037869,
|
340 |
+
"eval_JSTS_pearson_cosine": 0.8271822689658272,
|
341 |
+
"eval_JSTS_spearman_cosine": 0.7792775749489048,
|
342 |
+
"eval_sequential_score": 0.5102238089830271,
|
343 |
+
"eval_runtime": 77.0122,
|
344 |
+
"eval_samples_per_second": 2392.491,
|
345 |
+
"eval_steps_per_second": 4.675,
|
346 |
+
"epoch": 0.8981951890420187,
|
347 |
+
"step": 16000
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"loss": 0.0027,
|
351 |
+
"grad_norm": 0.0005995088722556829,
|
352 |
+
"learning_rate": 0.00023155407934131734,
|
353 |
+
"epoch": 0.9262637886995818,
|
354 |
+
"step": 16500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"loss": 0.0027,
|
358 |
+
"grad_norm": 0.0006232665036804974,
|
359 |
+
"learning_rate": 0.00023857129491017964,
|
360 |
+
"epoch": 0.9543323883571448,
|
361 |
+
"step": 17000
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"loss": 0.0026,
|
365 |
+
"grad_norm": 0.0004452952998690307,
|
366 |
+
"learning_rate": 0.0002455885104790419,
|
367 |
+
"epoch": 0.982400988014708,
|
368 |
+
"step": 17500
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"loss": 0.0026,
|
372 |
+
"grad_norm": 0.00046520173782482743,
|
373 |
+
"learning_rate": 0.0002526057260479042,
|
374 |
+
"epoch": 1.0104415190726135,
|
375 |
+
"step": 18000
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"eval_loss": 0.0012740237871184945,
|
379 |
+
"eval_evaluator_0": 0.0014586352044716477,
|
380 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7569989865371126,
|
381 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.75423179602674,
|
382 |
+
"eval_JSTS_pearson_cosine": 0.8323697140474166,
|
383 |
+
"eval_JSTS_spearman_cosine": 0.7847176995466478,
|
384 |
+
"eval_sequential_score": 0.5134693769259532,
|
385 |
+
"eval_runtime": 75.7689,
|
386 |
+
"eval_samples_per_second": 2431.75,
|
387 |
+
"eval_steps_per_second": 4.751,
|
388 |
+
"epoch": 1.0104415190726135,
|
389 |
+
"step": 18000
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"loss": 0.0026,
|
393 |
+
"grad_norm": 0.000663595914375037,
|
394 |
+
"learning_rate": 0.0002596229416167664,
|
395 |
+
"epoch": 1.0385101187301766,
|
396 |
+
"step": 18500
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"loss": 0.0026,
|
400 |
+
"grad_norm": 0.0004852344573009759,
|
401 |
+
"learning_rate": 0.0002666401571856287,
|
402 |
+
"epoch": 1.0665787183877395,
|
403 |
+
"step": 19000
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"loss": 0.0026,
|
407 |
+
"grad_norm": 0.0004660378326661885,
|
408 |
+
"learning_rate": 0.000273657372754491,
|
409 |
+
"epoch": 1.0946473180453027,
|
410 |
+
"step": 19500
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"loss": 0.0026,
|
414 |
+
"grad_norm": 0.0005068962927907705,
|
415 |
+
"learning_rate": 0.00028067458832335327,
|
416 |
+
"epoch": 1.1227159177028658,
|
417 |
+
"step": 20000
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"eval_loss": 0.0012583525385707617,
|
421 |
+
"eval_evaluator_0": 0.0014450980816036463,
|
422 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7685871450736268,
|
423 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7685391031501245,
|
424 |
+
"eval_JSTS_pearson_cosine": 0.8366257302162161,
|
425 |
+
"eval_JSTS_spearman_cosine": 0.7883307684121021,
|
426 |
+
"eval_sequential_score": 0.5194383232146101,
|
427 |
+
"eval_runtime": 73.3462,
|
428 |
+
"eval_samples_per_second": 2512.072,
|
429 |
+
"eval_steps_per_second": 4.908,
|
430 |
+
"epoch": 1.1227159177028658,
|
431 |
+
"step": 20000
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"loss": 0.0026,
|
435 |
+
"grad_norm": 0.0004811872495338321,
|
436 |
+
"learning_rate": 0.0002876918038922155,
|
437 |
+
"epoch": 1.150784517360429,
|
438 |
+
"step": 20500
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"loss": 0.0026,
|
442 |
+
"grad_norm": 0.00048696709563955665,
|
443 |
+
"learning_rate": 0.0002947090194610778,
|
444 |
+
"epoch": 1.178853117017992,
|
445 |
+
"step": 21000
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"loss": 0.0026,
|
449 |
+
"grad_norm": 0.0005413197795860469,
|
450 |
+
"learning_rate": 0.00029969536358232613,
|
451 |
+
"epoch": 1.206921716675555,
|
452 |
+
"step": 21500
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"loss": 0.0026,
|
456 |
+
"grad_norm": 0.00045019047684036195,
|
457 |
+
"learning_rate": 0.00029845700416088764,
|
458 |
+
"epoch": 1.2349903163331182,
|
459 |
+
"step": 22000
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"eval_loss": 0.0012464351020753384,
|
463 |
+
"eval_evaluator_0": 0.0014347253600135446,
|
464 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7692492893947476,
|
465 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7694627869363532,
|
466 |
+
"eval_JSTS_pearson_cosine": 0.8390020614430106,
|
467 |
+
"eval_JSTS_spearman_cosine": 0.7916375179002599,
|
468 |
+
"eval_sequential_score": 0.5208450100655422,
|
469 |
+
"eval_runtime": 70.9341,
|
470 |
+
"eval_samples_per_second": 2597.496,
|
471 |
+
"eval_steps_per_second": 5.075,
|
472 |
+
"epoch": 1.2349903163331182,
|
473 |
+
"step": 22000
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"loss": 0.0026,
|
477 |
+
"grad_norm": 0.0004873638099525124,
|
478 |
+
"learning_rate": 0.00029721864473944914,
|
479 |
+
"epoch": 1.263058915990681,
|
480 |
+
"step": 22500
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"loss": 0.0026,
|
484 |
+
"grad_norm": 0.00047726804041303694,
|
485 |
+
"learning_rate": 0.0002959802853180107,
|
486 |
+
"epoch": 1.2911275156482442,
|
487 |
+
"step": 23000
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"loss": 0.0025,
|
491 |
+
"grad_norm": 0.0004717214033007622,
|
492 |
+
"learning_rate": 0.0002947419258965722,
|
493 |
+
"epoch": 1.3191961153058074,
|
494 |
+
"step": 23500
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"loss": 0.0025,
|
498 |
+
"grad_norm": 0.00046010816004127264,
|
499 |
+
"learning_rate": 0.0002935035664751337,
|
500 |
+
"epoch": 1.3472647149633705,
|
501 |
+
"step": 24000
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"eval_loss": 0.0012361396802589297,
|
505 |
+
"eval_evaluator_0": 0.00142592191696167,
|
506 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7691914756523444,
|
507 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7697667204746023,
|
508 |
+
"eval_JSTS_pearson_cosine": 0.8417145522124531,
|
509 |
+
"eval_JSTS_spearman_cosine": 0.7937078701918163,
|
510 |
+
"eval_sequential_score": 0.5216335041944601,
|
511 |
+
"eval_runtime": 75.1661,
|
512 |
+
"eval_samples_per_second": 2451.253,
|
513 |
+
"eval_steps_per_second": 4.789,
|
514 |
+
"epoch": 1.3472647149633705,
|
515 |
+
"step": 24000
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"loss": 0.0025,
|
519 |
+
"grad_norm": 0.0004902255604974926,
|
520 |
+
"learning_rate": 0.00029226520705369526,
|
521 |
+
"epoch": 1.3753333146209337,
|
522 |
+
"step": 24500
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"loss": 0.0025,
|
526 |
+
"grad_norm": 0.0004407005035318434,
|
527 |
+
"learning_rate": 0.00029102684763225676,
|
528 |
+
"epoch": 1.4034019142784966,
|
529 |
+
"step": 25000
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"loss": 0.0025,
|
533 |
+
"grad_norm": 0.00044140563113614917,
|
534 |
+
"learning_rate": 0.0002897884882108183,
|
535 |
+
"epoch": 1.4314705139360597,
|
536 |
+
"step": 25500
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"loss": 0.0025,
|
540 |
+
"grad_norm": 0.00041528986184857786,
|
541 |
+
"learning_rate": 0.0002885501287893798,
|
542 |
+
"epoch": 1.4595391135936229,
|
543 |
+
"step": 26000
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"eval_loss": 0.0012283611577004194,
|
547 |
+
"eval_evaluator_0": 0.0014194094110280275,
|
548 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7765957004921605,
|
549 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7784908782504051,
|
550 |
+
"eval_JSTS_pearson_cosine": 0.8435137350349455,
|
551 |
+
"eval_JSTS_spearman_cosine": 0.7951288914596331,
|
552 |
+
"eval_sequential_score": 0.5250130597070221,
|
553 |
+
"eval_runtime": 75.7745,
|
554 |
+
"eval_samples_per_second": 2431.569,
|
555 |
+
"eval_steps_per_second": 4.751,
|
556 |
+
"epoch": 1.4595391135936229,
|
557 |
+
"step": 26000
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"loss": 0.0025,
|
561 |
+
"grad_norm": 0.0004047435650136322,
|
562 |
+
"learning_rate": 0.0002873117693679413,
|
563 |
+
"epoch": 1.4876077132511858,
|
564 |
+
"step": 26500
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"loss": 0.0025,
|
568 |
+
"grad_norm": 0.0004014256992377341,
|
569 |
+
"learning_rate": 0.0002860734099465028,
|
570 |
+
"epoch": 1.515676312908749,
|
571 |
+
"step": 27000
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"loss": 0.0025,
|
575 |
+
"grad_norm": 0.00044688646448776126,
|
576 |
+
"learning_rate": 0.0002848350505250644,
|
577 |
+
"epoch": 1.543744912566312,
|
578 |
+
"step": 27500
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"loss": 0.0025,
|
582 |
+
"grad_norm": 0.00040986225940287113,
|
583 |
+
"learning_rate": 0.0002835966911036259,
|
584 |
+
"epoch": 1.571813512223875,
|
585 |
+
"step": 28000
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"eval_loss": 0.0012222524965181947,
|
589 |
+
"eval_evaluator_0": 0.001413983409292996,
|
590 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7783094967374669,
|
591 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7798272724894207,
|
592 |
+
"eval_JSTS_pearson_cosine": 0.847750129011231,
|
593 |
+
"eval_JSTS_spearman_cosine": 0.7994761284870242,
|
594 |
+
"eval_sequential_score": 0.5269057947952459,
|
595 |
+
"eval_runtime": 71.22,
|
596 |
+
"eval_samples_per_second": 2587.07,
|
597 |
+
"eval_steps_per_second": 5.055,
|
598 |
+
"epoch": 1.571813512223875,
|
599 |
+
"step": 28000
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"loss": 0.0025,
|
603 |
+
"grad_norm": 0.00041717709973454475,
|
604 |
+
"learning_rate": 0.00028235833168218744,
|
605 |
+
"epoch": 1.5998821118814384,
|
606 |
+
"step": 28500
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"loss": 0.0025,
|
610 |
+
"grad_norm": 0.00043241435196250677,
|
611 |
+
"learning_rate": 0.00028111997226074894,
|
612 |
+
"epoch": 1.6279507115390013,
|
613 |
+
"step": 29000
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"loss": 0.0025,
|
617 |
+
"grad_norm": 0.0004293594683986157,
|
618 |
+
"learning_rate": 0.00027988161283931044,
|
619 |
+
"epoch": 1.6560193111965644,
|
620 |
+
"step": 29500
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"loss": 0.0025,
|
624 |
+
"grad_norm": 0.0004401277983561158,
|
625 |
+
"learning_rate": 0.000278643253417872,
|
626 |
+
"epoch": 1.6840879108541276,
|
627 |
+
"step": 30000
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"eval_loss": 0.0012164415093138814,
|
631 |
+
"eval_evaluator_0": 0.0014087973395362496,
|
632 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7798749605001464,
|
633 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7820560181229511,
|
634 |
+
"eval_JSTS_pearson_cosine": 0.8471103806180909,
|
635 |
+
"eval_JSTS_spearman_cosine": 0.7985064708274818,
|
636 |
+
"eval_sequential_score": 0.5273237620966564,
|
637 |
+
"eval_runtime": 73.8852,
|
638 |
+
"eval_samples_per_second": 2493.746,
|
639 |
+
"eval_steps_per_second": 4.872,
|
640 |
+
"epoch": 1.6840879108541276,
|
641 |
+
"step": 30000
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"loss": 0.0025,
|
645 |
+
"grad_norm": 0.00041988049633800983,
|
646 |
+
"learning_rate": 0.0002774048939964335,
|
647 |
+
"epoch": 1.7121565105116905,
|
648 |
+
"step": 30500
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"loss": 0.0025,
|
652 |
+
"grad_norm": 0.0003672194143291563,
|
653 |
+
"learning_rate": 0.000276166534574995,
|
654 |
+
"epoch": 1.7402251101692536,
|
655 |
+
"step": 31000
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"loss": 0.0025,
|
659 |
+
"grad_norm": 0.00039175362326204777,
|
660 |
+
"learning_rate": 0.00027492817515355656,
|
661 |
+
"epoch": 1.7682937098268168,
|
662 |
+
"step": 31500
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"loss": 0.0025,
|
666 |
+
"grad_norm": 0.0004079992650076747,
|
667 |
+
"learning_rate": 0.00027368981573211806,
|
668 |
+
"epoch": 1.7963623094843797,
|
669 |
+
"step": 32000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"eval_loss": 0.0012125095818191767,
|
673 |
+
"eval_evaluator_0": 0.001405515824444592,
|
674 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7859915873862344,
|
675 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.785955305161636,
|
676 |
+
"eval_JSTS_pearson_cosine": 0.848154268566394,
|
677 |
+
"eval_JSTS_spearman_cosine": 0.7998758648147456,
|
678 |
+
"eval_sequential_score": 0.5290788952669421,
|
679 |
+
"eval_runtime": 72.8877,
|
680 |
+
"eval_samples_per_second": 2527.874,
|
681 |
+
"eval_steps_per_second": 4.939,
|
682 |
+
"epoch": 1.7963623094843797,
|
683 |
+
"step": 32000
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"loss": 0.0025,
|
687 |
+
"grad_norm": 0.0003926429490093142,
|
688 |
+
"learning_rate": 0.0002724514563106796,
|
689 |
+
"epoch": 1.824430909141943,
|
690 |
+
"step": 32500
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"loss": 0.0025,
|
694 |
+
"grad_norm": 0.0004074297030456364,
|
695 |
+
"learning_rate": 0.0002712130968892411,
|
696 |
+
"epoch": 1.852499508799506,
|
697 |
+
"step": 33000
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"loss": 0.0025,
|
701 |
+
"grad_norm": 0.0003890927182510495,
|
702 |
+
"learning_rate": 0.0002699747374678026,
|
703 |
+
"epoch": 1.8805681084570691,
|
704 |
+
"step": 33500
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"loss": 0.0025,
|
708 |
+
"grad_norm": 0.00040131420246325433,
|
709 |
+
"learning_rate": 0.0002687363780463641,
|
710 |
+
"epoch": 1.9086367081146323,
|
711 |
+
"step": 34000
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"eval_loss": 0.0012091138632968068,
|
715 |
+
"eval_evaluator_0": 0.001402442343533039,
|
716 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7827178152250833,
|
717 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7859266574740394,
|
718 |
+
"eval_JSTS_pearson_cosine": 0.8484082672468725,
|
719 |
+
"eval_JSTS_spearman_cosine": 0.800852668744074,
|
720 |
+
"eval_sequential_score": 0.5293939228538821,
|
721 |
+
"eval_runtime": 75.221,
|
722 |
+
"eval_samples_per_second": 2449.463,
|
723 |
+
"eval_steps_per_second": 4.786,
|
724 |
+
"epoch": 1.9086367081146323,
|
725 |
+
"step": 34000
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"loss": 0.0025,
|
729 |
+
"grad_norm": 0.00038372183917090297,
|
730 |
+
"learning_rate": 0.0002674980186249257,
|
731 |
+
"epoch": 1.9367053077721952,
|
732 |
+
"step": 34500
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"loss": 0.0025,
|
736 |
+
"grad_norm": 0.00037665441050194204,
|
737 |
+
"learning_rate": 0.0002662596592034872,
|
738 |
+
"epoch": 1.9647739074297583,
|
739 |
+
"step": 35000
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"loss": 0.0025,
|
743 |
+
"grad_norm": 0.0003966049407608807,
|
744 |
+
"learning_rate": 0.00026502129978204874,
|
745 |
+
"epoch": 1.9928425070873215,
|
746 |
+
"step": 35500
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"loss": 0.0025,
|
750 |
+
"grad_norm": 0.0003766542940866202,
|
751 |
+
"learning_rate": 0.00026378294036061024,
|
752 |
+
"epoch": 2.020883038145227,
|
753 |
+
"step": 36000
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"eval_loss": 0.0012054507387802005,
|
757 |
+
"eval_evaluator_0": 0.0013995040208101273,
|
758 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.784020333700642,
|
759 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7840106595360978,
|
760 |
+
"eval_JSTS_pearson_cosine": 0.8490527668314187,
|
761 |
+
"eval_JSTS_spearman_cosine": 0.800047720066079,
|
762 |
+
"eval_sequential_score": 0.5284859612076623,
|
763 |
+
"eval_runtime": 69.7452,
|
764 |
+
"eval_samples_per_second": 2641.773,
|
765 |
+
"eval_steps_per_second": 5.162,
|
766 |
+
"epoch": 2.020883038145227,
|
767 |
+
"step": 36000
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"loss": 0.0025,
|
771 |
+
"grad_norm": 0.0004417026066221297,
|
772 |
+
"learning_rate": 0.00026254458093917174,
|
773 |
+
"epoch": 2.04895163780279,
|
774 |
+
"step": 36500
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"loss": 0.0025,
|
778 |
+
"grad_norm": 0.00041861977661028504,
|
779 |
+
"learning_rate": 0.0002613062215177333,
|
780 |
+
"epoch": 2.0770202374603532,
|
781 |
+
"step": 37000
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"loss": 0.0025,
|
785 |
+
"grad_norm": 0.0004018982872366905,
|
786 |
+
"learning_rate": 0.0002600678620962948,
|
787 |
+
"epoch": 2.105088837117916,
|
788 |
+
"step": 37500
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"loss": 0.0025,
|
792 |
+
"grad_norm": 0.00039656515582464635,
|
793 |
+
"learning_rate": 0.0002588295026748563,
|
794 |
+
"epoch": 2.133157436775479,
|
795 |
+
"step": 38000
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"eval_loss": 0.0012025837786495686,
|
799 |
+
"eval_evaluator_0": 0.0013965392718091607,
|
800 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7867175563214568,
|
801 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.788156882015082,
|
802 |
+
"eval_JSTS_pearson_cosine": 0.850585428356629,
|
803 |
+
"eval_JSTS_spearman_cosine": 0.8028791930427168,
|
804 |
+
"eval_sequential_score": 0.5308108714432027,
|
805 |
+
"eval_runtime": 75.0783,
|
806 |
+
"eval_samples_per_second": 2454.116,
|
807 |
+
"eval_steps_per_second": 4.795,
|
808 |
+
"epoch": 2.133157436775479,
|
809 |
+
"step": 38000
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"loss": 0.0025,
|
813 |
+
"grad_norm": 0.0003948920639231801,
|
814 |
+
"learning_rate": 0.00025759114325341786,
|
815 |
+
"epoch": 2.1612260364330425,
|
816 |
+
"step": 38500
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"loss": 0.0025,
|
820 |
+
"grad_norm": 0.0003850881475955248,
|
821 |
+
"learning_rate": 0.00025635278383197936,
|
822 |
+
"epoch": 2.1892946360906054,
|
823 |
+
"step": 39000
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"loss": 0.0025,
|
827 |
+
"grad_norm": 0.0003732353507075459,
|
828 |
+
"learning_rate": 0.0002551144244105409,
|
829 |
+
"epoch": 2.2173632357481683,
|
830 |
+
"step": 39500
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"loss": 0.0025,
|
834 |
+
"grad_norm": 0.0003862242156174034,
|
835 |
+
"learning_rate": 0.0002538760649891024,
|
836 |
+
"epoch": 2.2454318354057317,
|
837 |
+
"step": 40000
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"eval_loss": 0.0011998420814052224,
|
841 |
+
"eval_evaluator_0": 0.0013942737132310867,
|
842 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7852403092359551,
|
843 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.786725095511986,
|
844 |
+
"eval_JSTS_pearson_cosine": 0.8514233172740598,
|
845 |
+
"eval_JSTS_spearman_cosine": 0.8029822066091388,
|
846 |
+
"eval_sequential_score": 0.5303671919447853,
|
847 |
+
"eval_runtime": 75.9955,
|
848 |
+
"eval_samples_per_second": 2424.497,
|
849 |
+
"eval_steps_per_second": 4.737,
|
850 |
+
"epoch": 2.2454318354057317,
|
851 |
+
"step": 40000
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"loss": 0.0025,
|
855 |
+
"grad_norm": 0.000405432831030339,
|
856 |
+
"learning_rate": 0.0002526377055676639,
|
857 |
+
"epoch": 2.2735004350632946,
|
858 |
+
"step": 40500
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"loss": 0.0025,
|
862 |
+
"grad_norm": 0.0003881326410919428,
|
863 |
+
"learning_rate": 0.0002513993461462254,
|
864 |
+
"epoch": 2.301569034720858,
|
865 |
+
"step": 41000
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"loss": 0.0025,
|
869 |
+
"grad_norm": 0.0003565926162991673,
|
870 |
+
"learning_rate": 0.000250160986724787,
|
871 |
+
"epoch": 2.329637634378421,
|
872 |
+
"step": 41500
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"loss": 0.0025,
|
876 |
+
"grad_norm": 0.0004187309823464602,
|
877 |
+
"learning_rate": 0.0002489226273033485,
|
878 |
+
"epoch": 2.357706234035984,
|
879 |
+
"step": 42000
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"eval_loss": 0.0011972869979217649,
|
883 |
+
"eval_evaluator_0": 0.0013917966280132532,
|
884 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7895009562886788,
|
885 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7909140535786724,
|
886 |
+
"eval_JSTS_pearson_cosine": 0.8530308729488678,
|
887 |
+
"eval_JSTS_spearman_cosine": 0.8044463484338609,
|
888 |
+
"eval_sequential_score": 0.5322507328801822,
|
889 |
+
"eval_runtime": 72.3948,
|
890 |
+
"eval_samples_per_second": 2545.087,
|
891 |
+
"eval_steps_per_second": 4.973,
|
892 |
+
"epoch": 2.357706234035984,
|
893 |
+
"step": 42000
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"loss": 0.0025,
|
897 |
+
"grad_norm": 0.0004115802585147321,
|
898 |
+
"learning_rate": 0.00024768426788191004,
|
899 |
+
"epoch": 2.385774833693547,
|
900 |
+
"step": 42500
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"loss": 0.0025,
|
904 |
+
"grad_norm": 0.00038897068588994443,
|
905 |
+
"learning_rate": 0.00024644590846047154,
|
906 |
+
"epoch": 2.41384343335111,
|
907 |
+
"step": 43000
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"loss": 0.0024,
|
911 |
+
"grad_norm": 0.0004322814638726413,
|
912 |
+
"learning_rate": 0.0002452075490390331,
|
913 |
+
"epoch": 2.4419120330086734,
|
914 |
+
"step": 43500
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"loss": 0.0024,
|
918 |
+
"grad_norm": 0.0003841428260784596,
|
919 |
+
"learning_rate": 0.00024396918961759457,
|
920 |
+
"epoch": 2.4699806326662364,
|
921 |
+
"step": 44000
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"eval_loss": 0.0011959928087890148,
|
925 |
+
"eval_evaluator_0": 0.0013907015090808272,
|
926 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7889312871704597,
|
927 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7924519964178153,
|
928 |
+
"eval_JSTS_pearson_cosine": 0.8532937048934948,
|
929 |
+
"eval_JSTS_spearman_cosine": 0.8046551411750555,
|
930 |
+
"eval_sequential_score": 0.5328326130339839,
|
931 |
+
"eval_runtime": 70.5626,
|
932 |
+
"eval_samples_per_second": 2611.17,
|
933 |
+
"eval_steps_per_second": 5.102,
|
934 |
+
"epoch": 2.4699806326662364,
|
935 |
+
"step": 44000
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"loss": 0.0024,
|
939 |
+
"grad_norm": 0.0003754703502636403,
|
940 |
+
"learning_rate": 0.0002427308301961561,
|
941 |
+
"epoch": 2.4980492323237993,
|
942 |
+
"step": 44500
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"loss": 0.0024,
|
946 |
+
"grad_norm": 0.000383255654014647,
|
947 |
+
"learning_rate": 0.00024149247077471763,
|
948 |
+
"epoch": 2.526117831981362,
|
949 |
+
"step": 45000
|
950 |
+
},
|
951 |
+
{
|
952 |
+
"loss": 0.0024,
|
953 |
+
"grad_norm": 0.00039129829383455217,
|
954 |
+
"learning_rate": 0.00024025411135327916,
|
955 |
+
"epoch": 2.5541864316389256,
|
956 |
+
"step": 45500
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"loss": 0.0024,
|
960 |
+
"grad_norm": 0.00036208087112754583,
|
961 |
+
"learning_rate": 0.00023901575193184066,
|
962 |
+
"epoch": 2.5822550312964885,
|
963 |
+
"step": 46000
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"eval_loss": 0.001193435164168477,
|
967 |
+
"eval_evaluator_0": 0.0013883529463782907,
|
968 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7905069652961602,
|
969 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7944868870697853,
|
970 |
+
"eval_JSTS_pearson_cosine": 0.8558051282512369,
|
971 |
+
"eval_JSTS_spearman_cosine": 0.8081201355340467,
|
972 |
+
"eval_sequential_score": 0.5346651251834035,
|
973 |
+
"eval_runtime": 75.5038,
|
974 |
+
"eval_samples_per_second": 2440.286,
|
975 |
+
"eval_steps_per_second": 4.768,
|
976 |
+
"epoch": 2.5822550312964885,
|
977 |
+
"step": 46000
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"loss": 0.0024,
|
981 |
+
"grad_norm": 0.00036889282637275755,
|
982 |
+
"learning_rate": 0.0002377773925104022,
|
983 |
+
"epoch": 2.610323630954052,
|
984 |
+
"step": 46500
|
985 |
+
},
|
986 |
+
{
|
987 |
+
"loss": 0.0024,
|
988 |
+
"grad_norm": 0.0004052662698086351,
|
989 |
+
"learning_rate": 0.00023653903308896375,
|
990 |
+
"epoch": 2.6383922306116148,
|
991 |
+
"step": 47000
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"loss": 0.0024,
|
995 |
+
"grad_norm": 0.00035753531847149134,
|
996 |
+
"learning_rate": 0.00023530067366752525,
|
997 |
+
"epoch": 2.6664608302691777,
|
998 |
+
"step": 47500
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"loss": 0.0024,
|
1002 |
+
"grad_norm": 0.00040843107854016125,
|
1003 |
+
"learning_rate": 0.00023406231424608678,
|
1004 |
+
"epoch": 2.694529429926741,
|
1005 |
+
"step": 48000
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"eval_loss": 0.001191267161630094,
|
1009 |
+
"eval_evaluator_0": 0.0013865241780877113,
|
1010 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7895450351964287,
|
1011 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7918359978315925,
|
1012 |
+
"eval_JSTS_pearson_cosine": 0.8549595123958019,
|
1013 |
+
"eval_JSTS_spearman_cosine": 0.807145525822447,
|
1014 |
+
"eval_sequential_score": 0.5334560159440423,
|
1015 |
+
"eval_runtime": 75.509,
|
1016 |
+
"eval_samples_per_second": 2440.121,
|
1017 |
+
"eval_steps_per_second": 4.768,
|
1018 |
+
"epoch": 2.694529429926741,
|
1019 |
+
"step": 48000
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"loss": 0.0024,
|
1023 |
+
"grad_norm": 0.0003651395963970572,
|
1024 |
+
"learning_rate": 0.00023282395482464828,
|
1025 |
+
"epoch": 2.722598029584304,
|
1026 |
+
"step": 48500
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"loss": 0.0024,
|
1030 |
+
"grad_norm": 0.0004023007059004158,
|
1031 |
+
"learning_rate": 0.00023158559540320983,
|
1032 |
+
"epoch": 2.7506666292418673,
|
1033 |
+
"step": 49000
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"loss": 0.0024,
|
1037 |
+
"grad_norm": 0.00035017222398892045,
|
1038 |
+
"learning_rate": 0.00023034723598177134,
|
1039 |
+
"epoch": 2.7787352288994303,
|
1040 |
+
"step": 49500
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"loss": 0.0024,
|
1044 |
+
"grad_norm": 0.00035437452606856823,
|
1045 |
+
"learning_rate": 0.00022910887656033287,
|
1046 |
+
"epoch": 2.806803828556993,
|
1047 |
+
"step": 50000
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"eval_loss": 0.0011895851930603385,
|
1051 |
+
"eval_evaluator_0": 0.0013849218375980854,
|
1052 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7922481852931719,
|
1053 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7945407372089203,
|
1054 |
+
"eval_JSTS_pearson_cosine": 0.853618309736644,
|
1055 |
+
"eval_JSTS_spearman_cosine": 0.806310240190843,
|
1056 |
+
"eval_sequential_score": 0.5340786330791204,
|
1057 |
+
"eval_runtime": 69.7354,
|
1058 |
+
"eval_samples_per_second": 2642.143,
|
1059 |
+
"eval_steps_per_second": 5.162,
|
1060 |
+
"epoch": 2.806803828556993,
|
1061 |
+
"step": 50000
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"loss": 0.0024,
|
1065 |
+
"grad_norm": 0.00036025006556883454,
|
1066 |
+
"learning_rate": 0.00022787051713889437,
|
1067 |
+
"epoch": 2.8348724282145565,
|
1068 |
+
"step": 50500
|
1069 |
+
},
|
1070 |
+
{
|
1071 |
+
"loss": 0.0024,
|
1072 |
+
"grad_norm": 0.00039166337228380144,
|
1073 |
+
"learning_rate": 0.0002266321577174559,
|
1074 |
+
"epoch": 2.8629410278721195,
|
1075 |
+
"step": 51000
|
1076 |
+
},
|
1077 |
+
{
|
1078 |
+
"loss": 0.0024,
|
1079 |
+
"grad_norm": 0.00034316867822781205,
|
1080 |
+
"learning_rate": 0.00022539379829601743,
|
1081 |
+
"epoch": 2.8910096275296824,
|
1082 |
+
"step": 51500
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"loss": 0.0024,
|
1086 |
+
"grad_norm": 0.00034904375206679106,
|
1087 |
+
"learning_rate": 0.00022415543887457896,
|
1088 |
+
"epoch": 2.9190782271872457,
|
1089 |
+
"step": 52000
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"eval_loss": 0.0011883709812536836,
|
1093 |
+
"eval_evaluator_0": 0.0013841136824339628,
|
1094 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7910741852449901,
|
1095 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7930385547288906,
|
1096 |
+
"eval_JSTS_pearson_cosine": 0.8560901785956929,
|
1097 |
+
"eval_JSTS_spearman_cosine": 0.8078193158631177,
|
1098 |
+
"eval_sequential_score": 0.534080661424814,
|
1099 |
+
"eval_runtime": 73.0378,
|
1100 |
+
"eval_samples_per_second": 2522.681,
|
1101 |
+
"eval_steps_per_second": 4.929,
|
1102 |
+
"epoch": 2.9190782271872457,
|
1103 |
+
"step": 52000
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"loss": 0.0024,
|
1107 |
+
"grad_norm": 0.00038310152012854815,
|
1108 |
+
"learning_rate": 0.00022291707945314046,
|
1109 |
+
"epoch": 2.9471468268448087,
|
1110 |
+
"step": 52500
|
1111 |
+
},
|
1112 |
+
{
|
1113 |
+
"loss": 0.0024,
|
1114 |
+
"grad_norm": 0.00037686576251871884,
|
1115 |
+
"learning_rate": 0.000221678720031702,
|
1116 |
+
"epoch": 2.9752154265023716,
|
1117 |
+
"step": 53000
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"loss": 0.0024,
|
1121 |
+
"grad_norm": 0.0003636401961557567,
|
1122 |
+
"learning_rate": 0.0002204403606102635,
|
1123 |
+
"epoch": 3.0032559575602775,
|
1124 |
+
"step": 53500
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"loss": 0.0024,
|
1128 |
+
"grad_norm": 0.0003593047440517694,
|
1129 |
+
"learning_rate": 0.00021920200118882505,
|
1130 |
+
"epoch": 3.0313245572178404,
|
1131 |
+
"step": 54000
|
1132 |
+
},
|
1133 |
+
{
|
1134 |
+
"eval_loss": 0.001186997164040804,
|
1135 |
+
"eval_evaluator_0": 0.0013827680377289653,
|
1136 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7928793416853003,
|
1137 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7946997311878671,
|
1138 |
+
"eval_JSTS_pearson_cosine": 0.8561692207448726,
|
1139 |
+
"eval_JSTS_spearman_cosine": 0.8070635079461249,
|
1140 |
+
"eval_sequential_score": 0.5343820023905737,
|
1141 |
+
"eval_runtime": 74.9587,
|
1142 |
+
"eval_samples_per_second": 2458.035,
|
1143 |
+
"eval_steps_per_second": 4.803,
|
1144 |
+
"epoch": 3.0313245572178404,
|
1145 |
+
"step": 54000
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"loss": 0.0024,
|
1149 |
+
"grad_norm": 0.0003633006999734789,
|
1150 |
+
"learning_rate": 0.00021796364176738655,
|
1151 |
+
"epoch": 3.0593931568754034,
|
1152 |
+
"step": 54500
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"loss": 0.0024,
|
1156 |
+
"grad_norm": 0.00038046957342885435,
|
1157 |
+
"learning_rate": 0.00021672528234594808,
|
1158 |
+
"epoch": 3.0874617565329667,
|
1159 |
+
"step": 55000
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"loss": 0.0024,
|
1163 |
+
"grad_norm": 0.000375107309082523,
|
1164 |
+
"learning_rate": 0.00021548692292450958,
|
1165 |
+
"epoch": 3.1155303561905296,
|
1166 |
+
"step": 55500
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"loss": 0.0024,
|
1170 |
+
"grad_norm": 0.00037250894820317626,
|
1171 |
+
"learning_rate": 0.00021424856350307114,
|
1172 |
+
"epoch": 3.1435989558480926,
|
1173 |
+
"step": 56000
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"eval_loss": 0.001185316708870232,
|
1177 |
+
"eval_evaluator_0": 0.0013811604585498571,
|
1178 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7940863256555963,
|
1179 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7954504513319767,
|
1180 |
+
"eval_JSTS_pearson_cosine": 0.8560864211225326,
|
1181 |
+
"eval_JSTS_spearman_cosine": 0.8077153694140476,
|
1182 |
+
"eval_sequential_score": 0.5348489937348581,
|
1183 |
+
"eval_runtime": 69.9604,
|
1184 |
+
"eval_samples_per_second": 2633.647,
|
1185 |
+
"eval_steps_per_second": 5.146,
|
1186 |
+
"epoch": 3.1435989558480926,
|
1187 |
+
"step": 56000
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"loss": 0.0024,
|
1191 |
+
"grad_norm": 0.00036285867099650204,
|
1192 |
+
"learning_rate": 0.00021301020408163264,
|
1193 |
+
"epoch": 3.171667555505656,
|
1194 |
+
"step": 56500
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"loss": 0.0024,
|
1198 |
+
"grad_norm": 0.00036395539063960314,
|
1199 |
+
"learning_rate": 0.00021177184466019417,
|
1200 |
+
"epoch": 3.199736155163219,
|
1201 |
+
"step": 57000
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"loss": 0.0024,
|
1205 |
+
"grad_norm": 0.0003883049066644162,
|
1206 |
+
"learning_rate": 0.00021053348523875567,
|
1207 |
+
"epoch": 3.2278047548207818,
|
1208 |
+
"step": 57500
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"loss": 0.0024,
|
1212 |
+
"grad_norm": 0.00039045579615049064,
|
1213 |
+
"learning_rate": 0.0002092951258173172,
|
1214 |
+
"epoch": 3.255873354478345,
|
1215 |
+
"step": 58000
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"eval_loss": 0.0011840644292533398,
|
1219 |
+
"eval_evaluator_0": 0.0013800367014482617,
|
1220 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7945901145209169,
|
1221 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7969071310400232,
|
1222 |
+
"eval_JSTS_pearson_cosine": 0.8564336996988411,
|
1223 |
+
"eval_JSTS_spearman_cosine": 0.8082929419515673,
|
1224 |
+
"eval_sequential_score": 0.5355267032310129,
|
1225 |
+
"eval_runtime": 73.7991,
|
1226 |
+
"eval_samples_per_second": 2496.655,
|
1227 |
+
"eval_steps_per_second": 4.878,
|
1228 |
+
"epoch": 3.255873354478345,
|
1229 |
+
"step": 58000
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"loss": 0.0024,
|
1233 |
+
"grad_norm": 0.0003762798151001334,
|
1234 |
+
"learning_rate": 0.00020805676639587873,
|
1235 |
+
"epoch": 3.283941954135908,
|
1236 |
+
"step": 58500
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"loss": 0.0024,
|
1240 |
+
"grad_norm": 0.00034586797119118273,
|
1241 |
+
"learning_rate": 0.00020681840697444026,
|
1242 |
+
"epoch": 3.3120105537934714,
|
1243 |
+
"step": 59000
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"loss": 0.0024,
|
1247 |
+
"grad_norm": 0.0003964265051763505,
|
1248 |
+
"learning_rate": 0.00020558004755300176,
|
1249 |
+
"epoch": 3.3400791534510343,
|
1250 |
+
"step": 59500
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"loss": 0.0024,
|
1254 |
+
"grad_norm": 0.00035214261151850224,
|
1255 |
+
"learning_rate": 0.0002043416881315633,
|
1256 |
+
"epoch": 3.3681477531085973,
|
1257 |
+
"step": 60000
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"eval_loss": 0.001183054526336491,
|
1261 |
+
"eval_evaluator_0": 0.0013789632357656956,
|
1262 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.788845469490114,
|
1263 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7915900973042301,
|
1264 |
+
"eval_JSTS_pearson_cosine": 0.8573217830132864,
|
1265 |
+
"eval_JSTS_spearman_cosine": 0.8088596257787191,
|
1266 |
+
"eval_sequential_score": 0.5339428954395716,
|
1267 |
+
"eval_runtime": 74.7649,
|
1268 |
+
"eval_samples_per_second": 2464.404,
|
1269 |
+
"eval_steps_per_second": 4.815,
|
1270 |
+
"epoch": 3.3681477531085973,
|
1271 |
+
"step": 60000
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"loss": 0.0024,
|
1275 |
+
"grad_norm": 0.00036784267285838723,
|
1276 |
+
"learning_rate": 0.0002031033287101248,
|
1277 |
+
"epoch": 3.3962163527661606,
|
1278 |
+
"step": 60500
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"loss": 0.0024,
|
1282 |
+
"grad_norm": 0.000343677238561213,
|
1283 |
+
"learning_rate": 0.00020186496928868635,
|
1284 |
+
"epoch": 3.4242849524237235,
|
1285 |
+
"step": 61000
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"loss": 0.0024,
|
1289 |
+
"grad_norm": 0.00038110592868179083,
|
1290 |
+
"learning_rate": 0.00020062660986724785,
|
1291 |
+
"epoch": 3.452353552081287,
|
1292 |
+
"step": 61500
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"loss": 0.0024,
|
1296 |
+
"grad_norm": 0.0003722326655406505,
|
1297 |
+
"learning_rate": 0.00019938825044580938,
|
1298 |
+
"epoch": 3.48042215173885,
|
1299 |
+
"step": 62000
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"eval_loss": 0.0011825228575617075,
|
1303 |
+
"eval_evaluator_0": 0.00137852702755481,
|
1304 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7918929978349496,
|
1305 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7940915393599467,
|
1306 |
+
"eval_JSTS_pearson_cosine": 0.8575694411337575,
|
1307 |
+
"eval_JSTS_spearman_cosine": 0.8092433884345962,
|
1308 |
+
"eval_sequential_score": 0.5349044849406992,
|
1309 |
+
"eval_runtime": 73.3458,
|
1310 |
+
"eval_samples_per_second": 2512.087,
|
1311 |
+
"eval_steps_per_second": 4.908,
|
1312 |
+
"epoch": 3.48042215173885,
|
1313 |
+
"step": 62000
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"loss": 0.0024,
|
1317 |
+
"grad_norm": 0.00037806775071658194,
|
1318 |
+
"learning_rate": 0.00019814989102437088,
|
1319 |
+
"epoch": 3.5084907513964128,
|
1320 |
+
"step": 62500
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"loss": 0.0024,
|
1324 |
+
"grad_norm": 0.00033235494629479945,
|
1325 |
+
"learning_rate": 0.00019691153160293244,
|
1326 |
+
"epoch": 3.5365593510539757,
|
1327 |
+
"step": 63000
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"loss": 0.0024,
|
1331 |
+
"grad_norm": 0.0003531025140546262,
|
1332 |
+
"learning_rate": 0.00019567317218149394,
|
1333 |
+
"epoch": 3.564627950711539,
|
1334 |
+
"step": 63500
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"loss": 0.0024,
|
1338 |
+
"grad_norm": 0.00037601080839522183,
|
1339 |
+
"learning_rate": 0.00019443481276005547,
|
1340 |
+
"epoch": 3.592696550369102,
|
1341 |
+
"step": 64000
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"eval_loss": 0.0011816879268735647,
|
1345 |
+
"eval_evaluator_0": 0.0013777543790638447,
|
1346 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.793978583231683,
|
1347 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7965635420461006,
|
1348 |
+
"eval_JSTS_pearson_cosine": 0.8593126185258553,
|
1349 |
+
"eval_JSTS_spearman_cosine": 0.8111660595724337,
|
1350 |
+
"eval_sequential_score": 0.536369118665866,
|
1351 |
+
"eval_runtime": 73.2876,
|
1352 |
+
"eval_samples_per_second": 2514.083,
|
1353 |
+
"eval_steps_per_second": 4.912,
|
1354 |
+
"epoch": 3.592696550369102,
|
1355 |
+
"step": 64000
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"loss": 0.0024,
|
1359 |
+
"grad_norm": 0.00038335853605531156,
|
1360 |
+
"learning_rate": 0.00019319645333861697,
|
1361 |
+
"epoch": 3.6207651500266653,
|
1362 |
+
"step": 64500
|
1363 |
+
},
|
1364 |
+
{
|
1365 |
+
"loss": 0.0024,
|
1366 |
+
"grad_norm": 0.0003810620401054621,
|
1367 |
+
"learning_rate": 0.00019195809391717853,
|
1368 |
+
"epoch": 3.6488337496842282,
|
1369 |
+
"step": 65000
|
1370 |
+
},
|
1371 |
+
{
|
1372 |
+
"loss": 0.0024,
|
1373 |
+
"grad_norm": 0.00036980482400394976,
|
1374 |
+
"learning_rate": 0.00019071973449574003,
|
1375 |
+
"epoch": 3.676902349341791,
|
1376 |
+
"step": 65500
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"loss": 0.0024,
|
1380 |
+
"grad_norm": 0.00035592226777225733,
|
1381 |
+
"learning_rate": 0.00018948137507430156,
|
1382 |
+
"epoch": 3.7049709489993545,
|
1383 |
+
"step": 66000
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"eval_loss": 0.001180025632493198,
|
1387 |
+
"eval_evaluator_0": 0.0013761830050498247,
|
1388 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7942013155693763,
|
1389 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.795690335055399,
|
1390 |
+
"eval_JSTS_pearson_cosine": 0.8574208920400916,
|
1391 |
+
"eval_JSTS_spearman_cosine": 0.8088050540873077,
|
1392 |
+
"eval_sequential_score": 0.5352905240492521,
|
1393 |
+
"eval_runtime": 71.1029,
|
1394 |
+
"eval_samples_per_second": 2591.329,
|
1395 |
+
"eval_steps_per_second": 5.063,
|
1396 |
+
"epoch": 3.7049709489993545,
|
1397 |
+
"step": 66000
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"loss": 0.0024,
|
1401 |
+
"grad_norm": 0.0003833669179584831,
|
1402 |
+
"learning_rate": 0.00018824301565286306,
|
1403 |
+
"epoch": 3.7330395486569175,
|
1404 |
+
"step": 66500
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"loss": 0.0024,
|
1408 |
+
"grad_norm": 0.00034893417614512146,
|
1409 |
+
"learning_rate": 0.0001870046562314246,
|
1410 |
+
"epoch": 3.761108148314481,
|
1411 |
+
"step": 67000
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"loss": 0.0024,
|
1415 |
+
"grad_norm": 0.00034797278931364417,
|
1416 |
+
"learning_rate": 0.0001857662968099861,
|
1417 |
+
"epoch": 3.7891767479720437,
|
1418 |
+
"step": 67500
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"loss": 0.0024,
|
1422 |
+
"grad_norm": 0.00033796075149439275,
|
1423 |
+
"learning_rate": 0.00018452793738854765,
|
1424 |
+
"epoch": 3.8172453476296067,
|
1425 |
+
"step": 68000
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"eval_loss": 0.0011794335441663861,
|
1429 |
+
"eval_evaluator_0": 0.001375699182972312,
|
1430 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7927948755224404,
|
1431 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7964637470268982,
|
1432 |
+
"eval_JSTS_pearson_cosine": 0.8585216790750501,
|
1433 |
+
"eval_JSTS_spearman_cosine": 0.8104250125798427,
|
1434 |
+
"eval_sequential_score": 0.5360881529299043,
|
1435 |
+
"eval_runtime": 74.6048,
|
1436 |
+
"eval_samples_per_second": 2469.694,
|
1437 |
+
"eval_steps_per_second": 4.825,
|
1438 |
+
"epoch": 3.8172453476296067,
|
1439 |
+
"step": 68000
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"loss": 0.0024,
|
1443 |
+
"grad_norm": 0.00034984093508683145,
|
1444 |
+
"learning_rate": 0.00018328957796710915,
|
1445 |
+
"epoch": 3.8453139472871696,
|
1446 |
+
"step": 68500
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"loss": 0.0024,
|
1450 |
+
"grad_norm": 0.0003730449534486979,
|
1451 |
+
"learning_rate": 0.00018205121854567068,
|
1452 |
+
"epoch": 3.873382546944733,
|
1453 |
+
"step": 69000
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"loss": 0.0024,
|
1457 |
+
"grad_norm": 0.0003637449990492314,
|
1458 |
+
"learning_rate": 0.00018081285912423218,
|
1459 |
+
"epoch": 3.901451146602296,
|
1460 |
+
"step": 69500
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"loss": 0.0024,
|
1464 |
+
"grad_norm": 0.00034909258829429746,
|
1465 |
+
"learning_rate": 0.00017957449970279374,
|
1466 |
+
"epoch": 3.9295197462598592,
|
1467 |
+
"step": 70000
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"eval_loss": 0.0011782796354964375,
|
1471 |
+
"eval_evaluator_0": 0.0013747760094702244,
|
1472 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7922546321768296,
|
1473 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7948323017639329,
|
1474 |
+
"eval_JSTS_pearson_cosine": 0.8583284467056898,
|
1475 |
+
"eval_JSTS_spearman_cosine": 0.8101003363786926,
|
1476 |
+
"eval_sequential_score": 0.5354358047173653,
|
1477 |
+
"eval_runtime": 76.7277,
|
1478 |
+
"eval_samples_per_second": 2401.361,
|
1479 |
+
"eval_steps_per_second": 4.692,
|
1480 |
+
"epoch": 3.9295197462598592,
|
1481 |
+
"step": 70000
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"loss": 0.0024,
|
1485 |
+
"grad_norm": 0.0003403511946089566,
|
1486 |
+
"learning_rate": 0.00017833614028135524,
|
1487 |
+
"epoch": 3.957588345917422,
|
1488 |
+
"step": 70500
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"loss": 0.0024,
|
1492 |
+
"grad_norm": 0.0003837372059933841,
|
1493 |
+
"learning_rate": 0.00017709778085991677,
|
1494 |
+
"epoch": 3.985656945574985,
|
1495 |
+
"step": 71000
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"loss": 0.0024,
|
1499 |
+
"grad_norm": 0.0003609205596148968,
|
1500 |
+
"learning_rate": 0.00017585942143847827,
|
1501 |
+
"epoch": 4.013697476632891,
|
1502 |
+
"step": 71500
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"loss": 0.0024,
|
1506 |
+
"grad_norm": 0.00035595818189904094,
|
1507 |
+
"learning_rate": 0.00017462106201703983,
|
1508 |
+
"epoch": 4.041766076290454,
|
1509 |
+
"step": 72000
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"eval_loss": 0.0011778810294345021,
|
1513 |
+
"eval_evaluator_0": 0.00137452338822186,
|
1514 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7966269870347454,
|
1515 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7984801447329247,
|
1516 |
+
"eval_JSTS_pearson_cosine": 0.8607631663353562,
|
1517 |
+
"eval_JSTS_spearman_cosine": 0.8129269124974222,
|
1518 |
+
"eval_sequential_score": 0.5375938602061896,
|
1519 |
+
"eval_runtime": 74.4094,
|
1520 |
+
"eval_samples_per_second": 2476.18,
|
1521 |
+
"eval_steps_per_second": 4.838,
|
1522 |
+
"epoch": 4.041766076290454,
|
1523 |
+
"step": 72000
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"loss": 0.0024,
|
1527 |
+
"grad_norm": 0.0003813849180005491,
|
1528 |
+
"learning_rate": 0.00017338270259560133,
|
1529 |
+
"epoch": 4.069834675948017,
|
1530 |
+
"step": 72500
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"loss": 0.0024,
|
1534 |
+
"grad_norm": 0.0003693049948196858,
|
1535 |
+
"learning_rate": 0.00017214434317416286,
|
1536 |
+
"epoch": 4.09790327560558,
|
1537 |
+
"step": 73000
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"loss": 0.0024,
|
1541 |
+
"grad_norm": 0.00035990544711239636,
|
1542 |
+
"learning_rate": 0.00017090598375272436,
|
1543 |
+
"epoch": 4.125971875263144,
|
1544 |
+
"step": 73500
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"loss": 0.0024,
|
1548 |
+
"grad_norm": 0.0003601144708227366,
|
1549 |
+
"learning_rate": 0.0001696676243312859,
|
1550 |
+
"epoch": 4.1540404749207065,
|
1551 |
+
"step": 74000
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"eval_loss": 0.0011768318945541978,
|
1555 |
+
"eval_evaluator_0": 0.0013735340908169746,
|
1556 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7960225056174051,
|
1557 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.796425881500273,
|
1558 |
+
"eval_JSTS_pearson_cosine": 0.8595126900313504,
|
1559 |
+
"eval_JSTS_spearman_cosine": 0.8113933156160398,
|
1560 |
+
"eval_sequential_score": 0.5363975770690432,
|
1561 |
+
"eval_runtime": 72.397,
|
1562 |
+
"eval_samples_per_second": 2545.009,
|
1563 |
+
"eval_steps_per_second": 4.973,
|
1564 |
+
"epoch": 4.1540404749207065,
|
1565 |
+
"step": 74000
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"loss": 0.0024,
|
1569 |
+
"grad_norm": 0.00032057068892754614,
|
1570 |
+
"learning_rate": 0.00016842926490984742,
|
1571 |
+
"epoch": 4.182109074578269,
|
1572 |
+
"step": 74500
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"loss": 0.0024,
|
1576 |
+
"grad_norm": 0.00034604035317897797,
|
1577 |
+
"learning_rate": 0.00016719090548840895,
|
1578 |
+
"epoch": 4.210177674235832,
|
1579 |
+
"step": 75000
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"loss": 0.0024,
|
1583 |
+
"grad_norm": 0.0003545973158907145,
|
1584 |
+
"learning_rate": 0.00016595254606697045,
|
1585 |
+
"epoch": 4.238246273893395,
|
1586 |
+
"step": 75500
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"loss": 0.0024,
|
1590 |
+
"grad_norm": 0.00034211084130220115,
|
1591 |
+
"learning_rate": 0.00016471418664553198,
|
1592 |
+
"epoch": 4.266314873550958,
|
1593 |
+
"step": 76000
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"eval_loss": 0.0011760848574340343,
|
1597 |
+
"eval_evaluator_0": 0.0013727085897698998,
|
1598 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7948903122497631,
|
1599 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7964051915239347,
|
1600 |
+
"eval_JSTS_pearson_cosine": 0.8586153899615026,
|
1601 |
+
"eval_JSTS_spearman_cosine": 0.8105045038989925,
|
1602 |
+
"eval_sequential_score": 0.5360941346708991,
|
1603 |
+
"eval_runtime": 75.1808,
|
1604 |
+
"eval_samples_per_second": 2450.773,
|
1605 |
+
"eval_steps_per_second": 4.788,
|
1606 |
+
"epoch": 4.266314873550958,
|
1607 |
+
"step": 76000
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"loss": 0.0024,
|
1611 |
+
"grad_norm": 0.00035312894033268094,
|
1612 |
+
"learning_rate": 0.00016347582722409348,
|
1613 |
+
"epoch": 4.294383473208522,
|
1614 |
+
"step": 76500
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"loss": 0.0024,
|
1618 |
+
"grad_norm": 0.0003673464816529304,
|
1619 |
+
"learning_rate": 0.00016223746780265504,
|
1620 |
+
"epoch": 4.322452072866085,
|
1621 |
+
"step": 77000
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"loss": 0.0024,
|
1625 |
+
"grad_norm": 0.00035960401874035597,
|
1626 |
+
"learning_rate": 0.00016099910838121654,
|
1627 |
+
"epoch": 4.350520672523648,
|
1628 |
+
"step": 77500
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"loss": 0.0024,
|
1632 |
+
"grad_norm": 0.00036072355578653514,
|
1633 |
+
"learning_rate": 0.00015976074895977807,
|
1634 |
+
"epoch": 4.378589272181211,
|
1635 |
+
"step": 78000
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"eval_loss": 0.0011753218714147806,
|
1639 |
+
"eval_evaluator_0": 0.0013719868147745728,
|
1640 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.795324066980847,
|
1641 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7974887620221349,
|
1642 |
+
"eval_JSTS_pearson_cosine": 0.8592072333284577,
|
1643 |
+
"eval_JSTS_spearman_cosine": 0.8109905493632175,
|
1644 |
+
"eval_sequential_score": 0.5366170994000423,
|
1645 |
+
"eval_runtime": 75.244,
|
1646 |
+
"eval_samples_per_second": 2448.715,
|
1647 |
+
"eval_steps_per_second": 4.784,
|
1648 |
+
"epoch": 4.378589272181211,
|
1649 |
+
"step": 78000
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"loss": 0.0024,
|
1653 |
+
"grad_norm": 0.00036980511504225433,
|
1654 |
+
"learning_rate": 0.00015852238953833957,
|
1655 |
+
"epoch": 4.406657871838774,
|
1656 |
+
"step": 78500
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"loss": 0.0024,
|
1660 |
+
"grad_norm": 0.00036862987326458097,
|
1661 |
+
"learning_rate": 0.00015728403011690113,
|
1662 |
+
"epoch": 4.434726471496337,
|
1663 |
+
"step": 79000
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"loss": 0.0024,
|
1667 |
+
"grad_norm": 0.0003497784200590104,
|
1668 |
+
"learning_rate": 0.00015604567069546263,
|
1669 |
+
"epoch": 4.4627950711539,
|
1670 |
+
"step": 79500
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"loss": 0.0024,
|
1674 |
+
"grad_norm": 0.0003609252453316003,
|
1675 |
+
"learning_rate": 0.00015480731127402416,
|
1676 |
+
"epoch": 4.490863670811463,
|
1677 |
+
"step": 80000
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"eval_loss": 0.0011746675008907914,
|
1681 |
+
"eval_evaluator_0": 0.001371518475934863,
|
1682 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7943241357225923,
|
1683 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7958623517517603,
|
1684 |
+
"eval_JSTS_pearson_cosine": 0.8595840714983618,
|
1685 |
+
"eval_JSTS_spearman_cosine": 0.8113223465685817,
|
1686 |
+
"eval_sequential_score": 0.536185405598759,
|
1687 |
+
"eval_runtime": 71.8413,
|
1688 |
+
"eval_samples_per_second": 2564.696,
|
1689 |
+
"eval_steps_per_second": 5.011,
|
1690 |
+
"epoch": 4.490863670811463,
|
1691 |
+
"step": 80000
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"loss": 0.0024,
|
1695 |
+
"grad_norm": 0.0003620493516791612,
|
1696 |
+
"learning_rate": 0.00015356895185258566,
|
1697 |
+
"epoch": 4.518932270469026,
|
1698 |
+
"step": 80500
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"loss": 0.0024,
|
1702 |
+
"grad_norm": 0.0003764710854738951,
|
1703 |
+
"learning_rate": 0.0001523305924311472,
|
1704 |
+
"epoch": 4.547000870126589,
|
1705 |
+
"step": 81000
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"loss": 0.0024,
|
1709 |
+
"grad_norm": 0.0003772643976844847,
|
1710 |
+
"learning_rate": 0.00015109223300970875,
|
1711 |
+
"epoch": 4.575069469784152,
|
1712 |
+
"step": 81500
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"loss": 0.0024,
|
1716 |
+
"grad_norm": 0.00034990202402696013,
|
1717 |
+
"learning_rate": 0.00014985387358827025,
|
1718 |
+
"epoch": 4.603138069441716,
|
1719 |
+
"step": 82000
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"eval_loss": 0.001174184144474566,
|
1723 |
+
"eval_evaluator_0": 0.0013709234772250056,
|
1724 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7957272326156352,
|
1725 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7978851542982252,
|
1726 |
+
"eval_JSTS_pearson_cosine": 0.8601821520227879,
|
1727 |
+
"eval_JSTS_spearman_cosine": 0.8119161982838334,
|
1728 |
+
"eval_sequential_score": 0.5370574253530945,
|
1729 |
+
"eval_runtime": 73.1077,
|
1730 |
+
"eval_samples_per_second": 2520.268,
|
1731 |
+
"eval_steps_per_second": 4.924,
|
1732 |
+
"epoch": 4.603138069441716,
|
1733 |
+
"step": 82000
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"loss": 0.0024,
|
1737 |
+
"grad_norm": 0.000373341899830848,
|
1738 |
+
"learning_rate": 0.00014861551416683178,
|
1739 |
+
"epoch": 4.631206669099279,
|
1740 |
+
"step": 82500
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"loss": 0.0024,
|
1744 |
+
"grad_norm": 0.0003926403005607426,
|
1745 |
+
"learning_rate": 0.00014737715474539328,
|
1746 |
+
"epoch": 4.659275268756842,
|
1747 |
+
"step": 83000
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"loss": 0.0024,
|
1751 |
+
"grad_norm": 0.00034069083631038666,
|
1752 |
+
"learning_rate": 0.0001461387953239548,
|
1753 |
+
"epoch": 4.687343868414405,
|
1754 |
+
"step": 83500
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"loss": 0.0024,
|
1758 |
+
"grad_norm": 0.000384105573175475,
|
1759 |
+
"learning_rate": 0.00014490043590251634,
|
1760 |
+
"epoch": 4.715412468071968,
|
1761 |
+
"step": 84000
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"eval_loss": 0.0011737036984413862,
|
1765 |
+
"eval_evaluator_0": 0.0013708064798265696,
|
1766 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7956464956146001,
|
1767 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.798015078865507,
|
1768 |
+
"eval_JSTS_pearson_cosine": 0.8602937354382172,
|
1769 |
+
"eval_JSTS_spearman_cosine": 0.8122788292042248,
|
1770 |
+
"eval_sequential_score": 0.5372215715165195,
|
1771 |
+
"eval_runtime": 76.0545,
|
1772 |
+
"eval_samples_per_second": 2422.618,
|
1773 |
+
"eval_steps_per_second": 4.733,
|
1774 |
+
"epoch": 4.715412468071968,
|
1775 |
+
"step": 84000
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"loss": 0.0024,
|
1779 |
+
"grad_norm": 0.0003545938234310597,
|
1780 |
+
"learning_rate": 0.00014366207648107784,
|
1781 |
+
"epoch": 4.743481067729531,
|
1782 |
+
"step": 84500
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"loss": 0.0024,
|
1786 |
+
"grad_norm": 0.00034860073355957866,
|
1787 |
+
"learning_rate": 0.00014242371705963937,
|
1788 |
+
"epoch": 4.771549667387094,
|
1789 |
+
"step": 85000
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"loss": 0.0024,
|
1793 |
+
"grad_norm": 0.00032712245592847466,
|
1794 |
+
"learning_rate": 0.0001411853576382009,
|
1795 |
+
"epoch": 4.799618267044657,
|
1796 |
+
"step": 85500
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"loss": 0.0024,
|
1800 |
+
"grad_norm": 0.0003669277939479798,
|
1801 |
+
"learning_rate": 0.00013994699821676243,
|
1802 |
+
"epoch": 4.82768686670222,
|
1803 |
+
"step": 86000
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"eval_loss": 0.0011725523509085178,
|
1807 |
+
"eval_evaluator_0": 0.0013694484950974584,
|
1808 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7944287962917387,
|
1809 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7962719660375107,
|
1810 |
+
"eval_JSTS_pearson_cosine": 0.8603342393116733,
|
1811 |
+
"eval_JSTS_spearman_cosine": 0.8117996307099361,
|
1812 |
+
"eval_sequential_score": 0.5364803484141815,
|
1813 |
+
"eval_runtime": 72.4308,
|
1814 |
+
"eval_samples_per_second": 2543.82,
|
1815 |
+
"eval_steps_per_second": 4.97,
|
1816 |
+
"epoch": 4.82768686670222,
|
1817 |
+
"step": 86000
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"loss": 0.0024,
|
1821 |
+
"grad_norm": 0.0003452952078077942,
|
1822 |
+
"learning_rate": 0.00013870863879532393,
|
1823 |
+
"epoch": 4.855755466359783,
|
1824 |
+
"step": 86500
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"loss": 0.0024,
|
1828 |
+
"grad_norm": 0.000373579008737579,
|
1829 |
+
"learning_rate": 0.00013747027937388546,
|
1830 |
+
"epoch": 4.883824066017347,
|
1831 |
+
"step": 87000
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"loss": 0.0024,
|
1835 |
+
"grad_norm": 0.00036539442953653634,
|
1836 |
+
"learning_rate": 0.000136231919952447,
|
1837 |
+
"epoch": 4.91189266567491,
|
1838 |
+
"step": 87500
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"loss": 0.0024,
|
1842 |
+
"grad_norm": 0.00034126825630664825,
|
1843 |
+
"learning_rate": 0.00013499356053100852,
|
1844 |
+
"epoch": 4.939961265332473,
|
1845 |
+
"step": 88000
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"eval_loss": 0.0011726580560207367,
|
1849 |
+
"eval_evaluator_0": 0.0013694794615730643,
|
1850 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7947822441711181,
|
1851 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7985567920723605,
|
1852 |
+
"eval_JSTS_pearson_cosine": 0.8603459767041294,
|
1853 |
+
"eval_JSTS_spearman_cosine": 0.8125872790778134,
|
1854 |
+
"eval_sequential_score": 0.5375045168705823,
|
1855 |
+
"eval_runtime": 72.512,
|
1856 |
+
"eval_samples_per_second": 2540.973,
|
1857 |
+
"eval_steps_per_second": 4.965,
|
1858 |
+
"epoch": 4.939961265332473,
|
1859 |
+
"step": 88000
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"loss": 0.0024,
|
1863 |
+
"grad_norm": 0.0003895787231158465,
|
1864 |
+
"learning_rate": 0.00013375520110957002,
|
1865 |
+
"epoch": 4.968029864990036,
|
1866 |
+
"step": 88500
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"loss": 0.0024,
|
1870 |
+
"grad_norm": 0.00034253252670168877,
|
1871 |
+
"learning_rate": 0.00013251684168813155,
|
1872 |
+
"epoch": 4.9960984646475985,
|
1873 |
+
"step": 89000
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"loss": 0.0024,
|
1877 |
+
"grad_norm": 0.000371816277038306,
|
1878 |
+
"learning_rate": 0.00013127848226669308,
|
1879 |
+
"epoch": 5.0241389957055045,
|
1880 |
+
"step": 89500
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"loss": 0.0024,
|
1884 |
+
"grad_norm": 0.00035908666905015707,
|
1885 |
+
"learning_rate": 0.00013004012284525458,
|
1886 |
+
"epoch": 5.052207595363067,
|
1887 |
+
"step": 90000
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"eval_loss": 0.0011713592102751136,
|
1891 |
+
"eval_evaluator_0": 0.0013685176381841302,
|
1892 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7972527826834843,
|
1893 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7994197549835058,
|
1894 |
+
"eval_JSTS_pearson_cosine": 0.8598953052873622,
|
1895 |
+
"eval_JSTS_spearman_cosine": 0.8121179166649464,
|
1896 |
+
"eval_sequential_score": 0.5376353964288788,
|
1897 |
+
"eval_runtime": 73.9539,
|
1898 |
+
"eval_samples_per_second": 2491.431,
|
1899 |
+
"eval_steps_per_second": 4.868,
|
1900 |
+
"epoch": 5.052207595363067,
|
1901 |
+
"step": 90000
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"loss": 0.0024,
|
1905 |
+
"grad_norm": 0.0003359410329721868,
|
1906 |
+
"learning_rate": 0.0001288017634238161,
|
1907 |
+
"epoch": 5.08027619502063,
|
1908 |
+
"step": 90500
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"loss": 0.0024,
|
1912 |
+
"grad_norm": 0.0003694299957714975,
|
1913 |
+
"learning_rate": 0.00012756340400237764,
|
1914 |
+
"epoch": 5.108344794678193,
|
1915 |
+
"step": 91000
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"loss": 0.0024,
|
1919 |
+
"grad_norm": 0.00035323482006788254,
|
1920 |
+
"learning_rate": 0.00012632504458093917,
|
1921 |
+
"epoch": 5.136413394335756,
|
1922 |
+
"step": 91500
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"loss": 0.0024,
|
1926 |
+
"grad_norm": 0.00034838326973840594,
|
1927 |
+
"learning_rate": 0.00012508668515950067,
|
1928 |
+
"epoch": 5.16448199399332,
|
1929 |
+
"step": 92000
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"eval_loss": 0.001171564101241529,
|
1933 |
+
"eval_evaluator_0": 0.0013685659505426884,
|
1934 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7956367663644146,
|
1935 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7972514768821104,
|
1936 |
+
"eval_JSTS_pearson_cosine": 0.8603210424512124,
|
1937 |
+
"eval_JSTS_spearman_cosine": 0.812035751082205,
|
1938 |
+
"eval_sequential_score": 0.5368852646382861,
|
1939 |
+
"eval_runtime": 73.7319,
|
1940 |
+
"eval_samples_per_second": 2498.932,
|
1941 |
+
"eval_steps_per_second": 4.883,
|
1942 |
+
"epoch": 5.16448199399332,
|
1943 |
+
"step": 92000
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"loss": 0.0024,
|
1947 |
+
"grad_norm": 0.000366888998541981,
|
1948 |
+
"learning_rate": 0.0001238483257380622,
|
1949 |
+
"epoch": 5.192550593650883,
|
1950 |
+
"step": 92500
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"loss": 0.0024,
|
1954 |
+
"grad_norm": 0.0003418942214921117,
|
1955 |
+
"learning_rate": 0.00012260996631662373,
|
1956 |
+
"epoch": 5.220619193308446,
|
1957 |
+
"step": 93000
|
1958 |
+
},
|
1959 |
+
{
|
1960 |
+
"loss": 0.0024,
|
1961 |
+
"grad_norm": 0.0003668048302643001,
|
1962 |
+
"learning_rate": 0.00012137160689518524,
|
1963 |
+
"epoch": 5.248687792966009,
|
1964 |
+
"step": 93500
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"loss": 0.0024,
|
1968 |
+
"grad_norm": 0.0003521388862282038,
|
1969 |
+
"learning_rate": 0.00012013324747374676,
|
1970 |
+
"epoch": 5.276756392623572,
|
1971 |
+
"step": 94000
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"eval_loss": 0.0011708271922543645,
|
1975 |
+
"eval_evaluator_0": 0.0013678998220711946,
|
1976 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7961980730869951,
|
1977 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7969669668186664,
|
1978 |
+
"eval_JSTS_pearson_cosine": 0.8598902041888927,
|
1979 |
+
"eval_JSTS_spearman_cosine": 0.8122759372680154,
|
1980 |
+
"eval_sequential_score": 0.5368702679695844,
|
1981 |
+
"eval_runtime": 73.7553,
|
1982 |
+
"eval_samples_per_second": 2498.141,
|
1983 |
+
"eval_steps_per_second": 4.881,
|
1984 |
+
"epoch": 5.276756392623572,
|
1985 |
+
"step": 94000
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"loss": 0.0024,
|
1989 |
+
"grad_norm": 0.00038587721064686775,
|
1990 |
+
"learning_rate": 0.00011889488805230829,
|
1991 |
+
"epoch": 5.3048249922811355,
|
1992 |
+
"step": 94500
|
1993 |
+
},
|
1994 |
+
{
|
1995 |
+
"loss": 0.0024,
|
1996 |
+
"grad_norm": 0.0003625387034844607,
|
1997 |
+
"learning_rate": 0.0001176565286308698,
|
1998 |
+
"epoch": 5.332893591938698,
|
1999 |
+
"step": 95000
|
2000 |
+
},
|
2001 |
+
{
|
2002 |
+
"loss": 0.0024,
|
2003 |
+
"grad_norm": 0.000346001994330436,
|
2004 |
+
"learning_rate": 0.00011641816920943133,
|
2005 |
+
"epoch": 5.360962191596261,
|
2006 |
+
"step": 95500
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"loss": 0.0024,
|
2010 |
+
"grad_norm": 0.0003581918717827648,
|
2011 |
+
"learning_rate": 0.00011517980978799285,
|
2012 |
+
"epoch": 5.389030791253824,
|
2013 |
+
"step": 96000
|
2014 |
+
},
|
2015 |
+
{
|
2016 |
+
"eval_loss": 0.0011701997136697173,
|
2017 |
+
"eval_evaluator_0": 0.0013674315996468067,
|
2018 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7981789572820941,
|
2019 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.799695208936658,
|
2020 |
+
"eval_JSTS_pearson_cosine": 0.8598258650595708,
|
2021 |
+
"eval_JSTS_spearman_cosine": 0.8125775382281623,
|
2022 |
+
"eval_sequential_score": 0.5378800595881557,
|
2023 |
+
"eval_runtime": 72.2493,
|
2024 |
+
"eval_samples_per_second": 2550.21,
|
2025 |
+
"eval_steps_per_second": 4.983,
|
2026 |
+
"epoch": 5.389030791253824,
|
2027 |
+
"step": 96000
|
2028 |
+
},
|
2029 |
+
{
|
2030 |
+
"loss": 0.0024,
|
2031 |
+
"grad_norm": 0.00035948105505667627,
|
2032 |
+
"learning_rate": 0.00011394145036655436,
|
2033 |
+
"epoch": 5.417099390911387,
|
2034 |
+
"step": 96500
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"loss": 0.0024,
|
2038 |
+
"grad_norm": 0.0003364122530911118,
|
2039 |
+
"learning_rate": 0.0001127030909451159,
|
2040 |
+
"epoch": 5.445167990568951,
|
2041 |
+
"step": 97000
|
2042 |
+
},
|
2043 |
+
{
|
2044 |
+
"loss": 0.0024,
|
2045 |
+
"grad_norm": 0.0003634981403592974,
|
2046 |
+
"learning_rate": 0.00011146473152367741,
|
2047 |
+
"epoch": 5.473236590226514,
|
2048 |
+
"step": 97500
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"loss": 0.0024,
|
2052 |
+
"grad_norm": 0.0003649332211352885,
|
2053 |
+
"learning_rate": 0.00011022637210223895,
|
2054 |
+
"epoch": 5.501305189884077,
|
2055 |
+
"step": 98000
|
2056 |
+
},
|
2057 |
+
{
|
2058 |
+
"eval_loss": 0.0011697998270392418,
|
2059 |
+
"eval_evaluator_0": 0.0013669263571500778,
|
2060 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7931142327008134,
|
2061 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7957471539617756,
|
2062 |
+
"eval_JSTS_pearson_cosine": 0.8596991029296749,
|
2063 |
+
"eval_JSTS_spearman_cosine": 0.8113537089171092,
|
2064 |
+
"eval_sequential_score": 0.536155929745345,
|
2065 |
+
"eval_runtime": 73.393,
|
2066 |
+
"eval_samples_per_second": 2510.47,
|
2067 |
+
"eval_steps_per_second": 4.905,
|
2068 |
+
"epoch": 5.501305189884077,
|
2069 |
+
"step": 98000
|
2070 |
+
},
|
2071 |
+
{
|
2072 |
+
"loss": 0.0024,
|
2073 |
+
"grad_norm": 0.00038499030051752925,
|
2074 |
+
"learning_rate": 0.00010898801268080047,
|
2075 |
+
"epoch": 5.52937378954164,
|
2076 |
+
"step": 98500
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"loss": 0.0024,
|
2080 |
+
"grad_norm": 0.00034106100792996585,
|
2081 |
+
"learning_rate": 0.000107749653259362,
|
2082 |
+
"epoch": 5.557442389199203,
|
2083 |
+
"step": 99000
|
2084 |
+
},
|
2085 |
+
{
|
2086 |
+
"loss": 0.0024,
|
2087 |
+
"grad_norm": 0.00038382463390007615,
|
2088 |
+
"learning_rate": 0.00010651129383792351,
|
2089 |
+
"epoch": 5.585510988856766,
|
2090 |
+
"step": 99500
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"loss": 0.0024,
|
2094 |
+
"grad_norm": 0.00035632477374747396,
|
2095 |
+
"learning_rate": 0.00010527293441648504,
|
2096 |
+
"epoch": 5.613579588514329,
|
2097 |
+
"step": 100000
|
2098 |
+
},
|
2099 |
+
{
|
2100 |
+
"eval_loss": 0.0011689499951899052,
|
2101 |
+
"eval_evaluator_0": 0.0013659781543537974,
|
2102 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7955473991878141,
|
2103 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7979503915839332,
|
2104 |
+
"eval_JSTS_pearson_cosine": 0.861603427466545,
|
2105 |
+
"eval_JSTS_spearman_cosine": 0.8132431014099797,
|
2106 |
+
"eval_sequential_score": 0.5375198237160889,
|
2107 |
+
"eval_runtime": 73.285,
|
2108 |
+
"eval_samples_per_second": 2514.172,
|
2109 |
+
"eval_steps_per_second": 4.912,
|
2110 |
+
"epoch": 5.613579588514329,
|
2111 |
+
"step": 100000
|
2112 |
+
},
|
2113 |
+
{
|
2114 |
+
"loss": 0.0024,
|
2115 |
+
"grad_norm": 0.0003488284710329026,
|
2116 |
+
"learning_rate": 0.00010403457499504656,
|
2117 |
+
"epoch": 5.641648188171892,
|
2118 |
+
"step": 100500
|
2119 |
+
},
|
2120 |
+
{
|
2121 |
+
"loss": 0.0024,
|
2122 |
+
"grad_norm": 0.0003385685558896512,
|
2123 |
+
"learning_rate": 0.00010279621557360809,
|
2124 |
+
"epoch": 5.669716787829455,
|
2125 |
+
"step": 101000
|
2126 |
+
},
|
2127 |
+
{
|
2128 |
+
"loss": 0.0024,
|
2129 |
+
"grad_norm": 0.000358009448973462,
|
2130 |
+
"learning_rate": 0.0001015578561521696,
|
2131 |
+
"epoch": 5.697785387487018,
|
2132 |
+
"step": 101500
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"loss": 0.0024,
|
2136 |
+
"grad_norm": 0.00036567007191479206,
|
2137 |
+
"learning_rate": 0.00010031949673073112,
|
2138 |
+
"epoch": 5.725853987144581,
|
2139 |
+
"step": 102000
|
2140 |
+
},
|
2141 |
+
{
|
2142 |
+
"eval_loss": 0.0011688218219205737,
|
2143 |
+
"eval_evaluator_0": 0.001366003998555243,
|
2144 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.796658874864598,
|
2145 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7983816210608049,
|
2146 |
+
"eval_JSTS_pearson_cosine": 0.8614339209578082,
|
2147 |
+
"eval_JSTS_spearman_cosine": 0.8137949364794599,
|
2148 |
+
"eval_sequential_score": 0.53784752051294,
|
2149 |
+
"eval_runtime": 74.0336,
|
2150 |
+
"eval_samples_per_second": 2488.747,
|
2151 |
+
"eval_steps_per_second": 4.863,
|
2152 |
+
"epoch": 5.725853987144581,
|
2153 |
+
"step": 102000
|
2154 |
+
},
|
2155 |
+
{
|
2156 |
+
"loss": 0.0024,
|
2157 |
+
"grad_norm": 0.0003851432411465794,
|
2158 |
+
"learning_rate": 9.908113730929265e-05,
|
2159 |
+
"epoch": 5.753922586802144,
|
2160 |
+
"step": 102500
|
2161 |
+
},
|
2162 |
+
{
|
2163 |
+
"loss": 0.0024,
|
2164 |
+
"grad_norm": 0.0003519294841680676,
|
2165 |
+
"learning_rate": 9.784277788785416e-05,
|
2166 |
+
"epoch": 5.781991186459708,
|
2167 |
+
"step": 103000
|
2168 |
+
},
|
2169 |
+
{
|
2170 |
+
"loss": 0.0024,
|
2171 |
+
"grad_norm": 0.0003551561676431447,
|
2172 |
+
"learning_rate": 9.660441846641569e-05,
|
2173 |
+
"epoch": 5.810059786117271,
|
2174 |
+
"step": 103500
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"loss": 0.0024,
|
2178 |
+
"grad_norm": 0.00036788301076740026,
|
2179 |
+
"learning_rate": 9.536605904497721e-05,
|
2180 |
+
"epoch": 5.838128385774834,
|
2181 |
+
"step": 104000
|
2182 |
+
},
|
2183 |
+
{
|
2184 |
+
"eval_loss": 0.0011685107601806521,
|
2185 |
+
"eval_evaluator_0": 0.0013657337985932827,
|
2186 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7974990038670857,
|
2187 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7998327961795907,
|
2188 |
+
"eval_JSTS_pearson_cosine": 0.8615882286814495,
|
2189 |
+
"eval_JSTS_spearman_cosine": 0.8134121028192195,
|
2190 |
+
"eval_sequential_score": 0.5382035442658012,
|
2191 |
+
"eval_runtime": 75.725,
|
2192 |
+
"eval_samples_per_second": 2433.16,
|
2193 |
+
"eval_steps_per_second": 4.754,
|
2194 |
+
"epoch": 5.838128385774834,
|
2195 |
+
"step": 104000
|
2196 |
+
},
|
2197 |
+
{
|
2198 |
+
"loss": 0.0024,
|
2199 |
+
"grad_norm": 0.0003417586558498442,
|
2200 |
+
"learning_rate": 9.412769962353874e-05,
|
2201 |
+
"epoch": 5.8661969854323965,
|
2202 |
+
"step": 104500
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"loss": 0.0024,
|
2206 |
+
"grad_norm": 0.00036630959948524833,
|
2207 |
+
"learning_rate": 9.288934020210025e-05,
|
2208 |
+
"epoch": 5.8942655850899595,
|
2209 |
+
"step": 105000
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"loss": 0.0024,
|
2213 |
+
"grad_norm": 0.0003538629098329693,
|
2214 |
+
"learning_rate": 9.165098078066178e-05,
|
2215 |
+
"epoch": 5.922334184747523,
|
2216 |
+
"step": 105500
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"loss": 0.0024,
|
2220 |
+
"grad_norm": 0.0003364156873431057,
|
2221 |
+
"learning_rate": 9.04126213592233e-05,
|
2222 |
+
"epoch": 5.950402784405086,
|
2223 |
+
"step": 106000
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"eval_loss": 0.0011676481226459146,
|
2227 |
+
"eval_evaluator_0": 0.0013648421736434102,
|
2228 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7987319776822839,
|
2229 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8013060925089577,
|
2230 |
+
"eval_JSTS_pearson_cosine": 0.8606203102100304,
|
2231 |
+
"eval_JSTS_spearman_cosine": 0.8123940829683924,
|
2232 |
+
"eval_sequential_score": 0.5383550058836645,
|
2233 |
+
"eval_runtime": 71.0673,
|
2234 |
+
"eval_samples_per_second": 2592.628,
|
2235 |
+
"eval_steps_per_second": 5.066,
|
2236 |
+
"epoch": 5.950402784405086,
|
2237 |
+
"step": 106000
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"loss": 0.0024,
|
2241 |
+
"grad_norm": 0.00037549331318587065,
|
2242 |
+
"learning_rate": 8.917426193778481e-05,
|
2243 |
+
"epoch": 5.978471384062649,
|
2244 |
+
"step": 106500
|
2245 |
+
},
|
2246 |
+
{
|
2247 |
+
"loss": 0.0024,
|
2248 |
+
"grad_norm": 0.0003623282827902585,
|
2249 |
+
"learning_rate": 8.793590251634634e-05,
|
2250 |
+
"epoch": 6.006511915120555,
|
2251 |
+
"step": 107000
|
2252 |
+
},
|
2253 |
+
{
|
2254 |
+
"loss": 0.0024,
|
2255 |
+
"grad_norm": 0.0003772232448682189,
|
2256 |
+
"learning_rate": 8.669754309490786e-05,
|
2257 |
+
"epoch": 6.034580514778118,
|
2258 |
+
"step": 107500
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"loss": 0.0024,
|
2262 |
+
"grad_norm": 0.0003239116631448269,
|
2263 |
+
"learning_rate": 8.545918367346939e-05,
|
2264 |
+
"epoch": 6.062649114435681,
|
2265 |
+
"step": 108000
|
2266 |
+
},
|
2267 |
+
{
|
2268 |
+
"eval_loss": 0.0011675840942189097,
|
2269 |
+
"eval_evaluator_0": 0.0013649420579895377,
|
2270 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.797541186470268,
|
2271 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.798678131270505,
|
2272 |
+
"eval_JSTS_pearson_cosine": 0.8611829209171061,
|
2273 |
+
"eval_JSTS_spearman_cosine": 0.8134092826099162,
|
2274 |
+
"eval_sequential_score": 0.5378174519794703,
|
2275 |
+
"eval_runtime": 74.4646,
|
2276 |
+
"eval_samples_per_second": 2474.344,
|
2277 |
+
"eval_steps_per_second": 4.835,
|
2278 |
+
"epoch": 6.062649114435681,
|
2279 |
+
"step": 108000
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"loss": 0.0024,
|
2283 |
+
"grad_norm": 0.0003176493337377906,
|
2284 |
+
"learning_rate": 8.42208242520309e-05,
|
2285 |
+
"epoch": 6.090717714093244,
|
2286 |
+
"step": 108500
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"loss": 0.0024,
|
2290 |
+
"grad_norm": 0.0003452330129221082,
|
2291 |
+
"learning_rate": 8.298246483059243e-05,
|
2292 |
+
"epoch": 6.118786313750807,
|
2293 |
+
"step": 109000
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"loss": 0.0024,
|
2297 |
+
"grad_norm": 0.00034453245461918414,
|
2298 |
+
"learning_rate": 8.174410540915395e-05,
|
2299 |
+
"epoch": 6.14685491340837,
|
2300 |
+
"step": 109500
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"loss": 0.0024,
|
2304 |
+
"grad_norm": 0.0003421856090426445,
|
2305 |
+
"learning_rate": 8.050574598771546e-05,
|
2306 |
+
"epoch": 6.1749235130659335,
|
2307 |
+
"step": 110000
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"eval_loss": 0.001166862086392939,
|
2311 |
+
"eval_evaluator_0": 0.0013641597470268607,
|
2312 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7964846527892946,
|
2313 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7985939451864762,
|
2314 |
+
"eval_JSTS_pearson_cosine": 0.8611403607210577,
|
2315 |
+
"eval_JSTS_spearman_cosine": 0.8127204480758368,
|
2316 |
+
"eval_sequential_score": 0.5375595176697799,
|
2317 |
+
"eval_runtime": 76.0958,
|
2318 |
+
"eval_samples_per_second": 2421.305,
|
2319 |
+
"eval_steps_per_second": 4.731,
|
2320 |
+
"epoch": 6.1749235130659335,
|
2321 |
+
"step": 110000
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"loss": 0.0024,
|
2325 |
+
"grad_norm": 0.0003415006503928453,
|
2326 |
+
"learning_rate": 7.9267386566277e-05,
|
2327 |
+
"epoch": 6.202992112723496,
|
2328 |
+
"step": 110500
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"loss": 0.0024,
|
2332 |
+
"grad_norm": 0.0003598456096369773,
|
2333 |
+
"learning_rate": 7.802902714483851e-05,
|
2334 |
+
"epoch": 6.231060712381059,
|
2335 |
+
"step": 111000
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"loss": 0.0024,
|
2339 |
+
"grad_norm": 0.0003484071639832109,
|
2340 |
+
"learning_rate": 7.679066772340004e-05,
|
2341 |
+
"epoch": 6.259129312038622,
|
2342 |
+
"step": 111500
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"loss": 0.0024,
|
2346 |
+
"grad_norm": 0.000359120691427961,
|
2347 |
+
"learning_rate": 7.555230830196155e-05,
|
2348 |
+
"epoch": 6.287197911696185,
|
2349 |
+
"step": 112000
|
2350 |
+
},
|
2351 |
+
{
|
2352 |
+
"eval_loss": 0.0011666708160191774,
|
2353 |
+
"eval_evaluator_0": 0.0013638917589560151,
|
2354 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7961017872096734,
|
2355 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7979849882595907,
|
2356 |
+
"eval_JSTS_pearson_cosine": 0.8610830381621996,
|
2357 |
+
"eval_JSTS_spearman_cosine": 0.8127868051847031,
|
2358 |
+
"eval_sequential_score": 0.5373785617344167,
|
2359 |
+
"eval_runtime": 75.0848,
|
2360 |
+
"eval_samples_per_second": 2453.905,
|
2361 |
+
"eval_steps_per_second": 4.795,
|
2362 |
+
"epoch": 6.287197911696185,
|
2363 |
+
"step": 112000
|
2364 |
+
},
|
2365 |
+
{
|
2366 |
+
"loss": 0.0024,
|
2367 |
+
"grad_norm": 0.000345466221915558,
|
2368 |
+
"learning_rate": 7.431394888052308e-05,
|
2369 |
+
"epoch": 6.315266511353749,
|
2370 |
+
"step": 112500
|
2371 |
+
},
|
2372 |
+
{
|
2373 |
+
"loss": 0.0024,
|
2374 |
+
"grad_norm": 0.0003590380947571248,
|
2375 |
+
"learning_rate": 7.30755894590846e-05,
|
2376 |
+
"epoch": 6.343335111011312,
|
2377 |
+
"step": 113000
|
2378 |
+
},
|
2379 |
+
{
|
2380 |
+
"loss": 0.0024,
|
2381 |
+
"grad_norm": 0.00031623526592738926,
|
2382 |
+
"learning_rate": 7.183723003764611e-05,
|
2383 |
+
"epoch": 6.371403710668875,
|
2384 |
+
"step": 113500
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"loss": 0.0024,
|
2388 |
+
"grad_norm": 0.0003682223614305258,
|
2389 |
+
"learning_rate": 7.059887061620764e-05,
|
2390 |
+
"epoch": 6.399472310326438,
|
2391 |
+
"step": 114000
|
2392 |
+
},
|
2393 |
+
{
|
2394 |
+
"eval_loss": 0.001166442409157753,
|
2395 |
+
"eval_evaluator_0": 0.0013636148069053888,
|
2396 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7965842694288822,
|
2397 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7980305345551676,
|
2398 |
+
"eval_JSTS_pearson_cosine": 0.8614633327316192,
|
2399 |
+
"eval_JSTS_spearman_cosine": 0.8137131868068991,
|
2400 |
+
"eval_sequential_score": 0.5377024453896574,
|
2401 |
+
"eval_runtime": 74.1271,
|
2402 |
+
"eval_samples_per_second": 2485.609,
|
2403 |
+
"eval_steps_per_second": 4.857,
|
2404 |
+
"epoch": 6.399472310326438,
|
2405 |
+
"step": 114000
|
2406 |
+
},
|
2407 |
+
{
|
2408 |
+
"loss": 0.0024,
|
2409 |
+
"grad_norm": 0.0003290139138698578,
|
2410 |
+
"learning_rate": 6.936051119476916e-05,
|
2411 |
+
"epoch": 6.427540909984001,
|
2412 |
+
"step": 114500
|
2413 |
+
},
|
2414 |
+
{
|
2415 |
+
"loss": 0.0024,
|
2416 |
+
"grad_norm": 0.0003496033023111522,
|
2417 |
+
"learning_rate": 6.812215177333069e-05,
|
2418 |
+
"epoch": 6.4556095096415635,
|
2419 |
+
"step": 115000
|
2420 |
+
},
|
2421 |
+
{
|
2422 |
+
"loss": 0.0024,
|
2423 |
+
"grad_norm": 0.00037992914440110326,
|
2424 |
+
"learning_rate": 6.68837923518922e-05,
|
2425 |
+
"epoch": 6.483678109299127,
|
2426 |
+
"step": 115500
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"loss": 0.0024,
|
2430 |
+
"grad_norm": 0.00033238163450732827,
|
2431 |
+
"learning_rate": 6.564543293045373e-05,
|
2432 |
+
"epoch": 6.51174670895669,
|
2433 |
+
"step": 116000
|
2434 |
+
},
|
2435 |
+
{
|
2436 |
+
"eval_loss": 0.0011659334413707256,
|
2437 |
+
"eval_evaluator_0": 0.0013632605550810695,
|
2438 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7960308639337882,
|
2439 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7987892401333858,
|
2440 |
+
"eval_JSTS_pearson_cosine": 0.8609535858873032,
|
2441 |
+
"eval_JSTS_spearman_cosine": 0.8129194572102592,
|
2442 |
+
"eval_sequential_score": 0.5376906526329087,
|
2443 |
+
"eval_runtime": 75.8225,
|
2444 |
+
"eval_samples_per_second": 2430.031,
|
2445 |
+
"eval_steps_per_second": 4.748,
|
2446 |
+
"epoch": 6.51174670895669,
|
2447 |
+
"step": 116000
|
2448 |
+
},
|
2449 |
+
{
|
2450 |
+
"loss": 0.0024,
|
2451 |
+
"grad_norm": 0.00036796656786464155,
|
2452 |
+
"learning_rate": 6.440707350901525e-05,
|
2453 |
+
"epoch": 6.539815308614253,
|
2454 |
+
"step": 116500
|
2455 |
+
},
|
2456 |
+
{
|
2457 |
+
"loss": 0.0024,
|
2458 |
+
"grad_norm": 0.00036114981048740447,
|
2459 |
+
"learning_rate": 6.316871408757678e-05,
|
2460 |
+
"epoch": 6.567883908271816,
|
2461 |
+
"step": 117000
|
2462 |
+
},
|
2463 |
+
{
|
2464 |
+
"loss": 0.0024,
|
2465 |
+
"grad_norm": 0.0003341217234265059,
|
2466 |
+
"learning_rate": 6.19303546661383e-05,
|
2467 |
+
"epoch": 6.595952507929379,
|
2468 |
+
"step": 117500
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"loss": 0.0024,
|
2472 |
+
"grad_norm": 0.00033465935848653316,
|
2473 |
+
"learning_rate": 6.0691995244699816e-05,
|
2474 |
+
"epoch": 6.624021107586943,
|
2475 |
+
"step": 118000
|
2476 |
+
},
|
2477 |
+
{
|
2478 |
+
"eval_loss": 0.001165699097327888,
|
2479 |
+
"eval_evaluator_0": 0.0013630150351673365,
|
2480 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7981864061322079,
|
2481 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8006961439309341,
|
2482 |
+
"eval_JSTS_pearson_cosine": 0.8621061916067831,
|
2483 |
+
"eval_JSTS_spearman_cosine": 0.813845436526813,
|
2484 |
+
"eval_sequential_score": 0.5386348651643048,
|
2485 |
+
"eval_runtime": 74.5723,
|
2486 |
+
"eval_samples_per_second": 2470.771,
|
2487 |
+
"eval_steps_per_second": 4.828,
|
2488 |
+
"epoch": 6.624021107586943,
|
2489 |
+
"step": 118000
|
2490 |
+
},
|
2491 |
+
{
|
2492 |
+
"loss": 0.0024,
|
2493 |
+
"grad_norm": 0.0003290769236627966,
|
2494 |
+
"learning_rate": 5.945363582326134e-05,
|
2495 |
+
"epoch": 6.652089707244506,
|
2496 |
+
"step": 118500
|
2497 |
+
},
|
2498 |
+
{
|
2499 |
+
"loss": 0.0024,
|
2500 |
+
"grad_norm": 0.0003693581384140998,
|
2501 |
+
"learning_rate": 5.821527640182286e-05,
|
2502 |
+
"epoch": 6.680158306902069,
|
2503 |
+
"step": 119000
|
2504 |
+
},
|
2505 |
+
{
|
2506 |
+
"loss": 0.0024,
|
2507 |
+
"grad_norm": 0.000339480146067217,
|
2508 |
+
"learning_rate": 5.697691698038438e-05,
|
2509 |
+
"epoch": 6.708226906559632,
|
2510 |
+
"step": 119500
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"loss": 0.0024,
|
2514 |
+
"grad_norm": 0.0003198812191840261,
|
2515 |
+
"learning_rate": 5.57385575589459e-05,
|
2516 |
+
"epoch": 6.7362955062171945,
|
2517 |
+
"step": 120000
|
2518 |
+
},
|
2519 |
+
{
|
2520 |
+
"eval_loss": 0.0011652549728751183,
|
2521 |
+
"eval_evaluator_0": 0.0013625958235934377,
|
2522 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7999146186391144,
|
2523 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8018843128444009,
|
2524 |
+
"eval_JSTS_pearson_cosine": 0.8623027854132908,
|
2525 |
+
"eval_JSTS_spearman_cosine": 0.8142636672530339,
|
2526 |
+
"eval_sequential_score": 0.5391701919736761,
|
2527 |
+
"eval_runtime": 72.7378,
|
2528 |
+
"eval_samples_per_second": 2533.083,
|
2529 |
+
"eval_steps_per_second": 4.949,
|
2530 |
+
"epoch": 6.7362955062171945,
|
2531 |
+
"step": 120000
|
2532 |
+
},
|
2533 |
+
{
|
2534 |
+
"loss": 0.0024,
|
2535 |
+
"grad_norm": 0.00033788220025599003,
|
2536 |
+
"learning_rate": 5.450019813750742e-05,
|
2537 |
+
"epoch": 6.764364105874758,
|
2538 |
+
"step": 120500
|
2539 |
+
},
|
2540 |
+
{
|
2541 |
+
"loss": 0.0024,
|
2542 |
+
"grad_norm": 0.0003455994592513889,
|
2543 |
+
"learning_rate": 5.3261838716068944e-05,
|
2544 |
+
"epoch": 6.792432705532321,
|
2545 |
+
"step": 121000
|
2546 |
+
},
|
2547 |
+
{
|
2548 |
+
"loss": 0.0024,
|
2549 |
+
"grad_norm": 0.00035492057213559747,
|
2550 |
+
"learning_rate": 5.202347929463047e-05,
|
2551 |
+
"epoch": 6.820501305189884,
|
2552 |
+
"step": 121500
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"loss": 0.0024,
|
2556 |
+
"grad_norm": 0.0003294384223408997,
|
2557 |
+
"learning_rate": 5.078511987319199e-05,
|
2558 |
+
"epoch": 6.848569904847447,
|
2559 |
+
"step": 122000
|
2560 |
+
},
|
2561 |
+
{
|
2562 |
+
"eval_loss": 0.00116501294542104,
|
2563 |
+
"eval_evaluator_0": 0.001362400595098734,
|
2564 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7961266901173212,
|
2565 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7980347334366136,
|
2566 |
+
"eval_JSTS_pearson_cosine": 0.861779208629962,
|
2567 |
+
"eval_JSTS_spearman_cosine": 0.8137240607202665,
|
2568 |
+
"eval_sequential_score": 0.5377070649173262,
|
2569 |
+
"eval_runtime": 71.8999,
|
2570 |
+
"eval_samples_per_second": 2562.604,
|
2571 |
+
"eval_steps_per_second": 5.007,
|
2572 |
+
"epoch": 6.848569904847447,
|
2573 |
+
"step": 122000
|
2574 |
+
},
|
2575 |
+
{
|
2576 |
+
"loss": 0.0024,
|
2577 |
+
"grad_norm": 0.00034672432229854167,
|
2578 |
+
"learning_rate": 4.954676045175351e-05,
|
2579 |
+
"epoch": 6.87663850450501,
|
2580 |
+
"step": 122500
|
2581 |
+
},
|
2582 |
+
{
|
2583 |
+
"loss": 0.0024,
|
2584 |
+
"grad_norm": 0.00033899256959557533,
|
2585 |
+
"learning_rate": 4.830840103031503e-05,
|
2586 |
+
"epoch": 6.904707104162574,
|
2587 |
+
"step": 123000
|
2588 |
+
},
|
2589 |
+
{
|
2590 |
+
"loss": 0.0024,
|
2591 |
+
"grad_norm": 0.0003218873462174088,
|
2592 |
+
"learning_rate": 4.707004160887656e-05,
|
2593 |
+
"epoch": 6.932775703820137,
|
2594 |
+
"step": 123500
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"loss": 0.0024,
|
2598 |
+
"grad_norm": 0.0003494083066470921,
|
2599 |
+
"learning_rate": 4.583168218743808e-05,
|
2600 |
+
"epoch": 6.9608443034777,
|
2601 |
+
"step": 124000
|
2602 |
+
},
|
2603 |
+
{
|
2604 |
+
"eval_loss": 0.0011646621860563755,
|
2605 |
+
"eval_evaluator_0": 0.001362146227620542,
|
2606 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.8002158796274099,
|
2607 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8028449862236761,
|
2608 |
+
"eval_JSTS_pearson_cosine": 0.8621321684464223,
|
2609 |
+
"eval_JSTS_spearman_cosine": 0.8142098135048893,
|
2610 |
+
"eval_sequential_score": 0.5394723153187286,
|
2611 |
+
"eval_runtime": 70.6182,
|
2612 |
+
"eval_samples_per_second": 2609.113,
|
2613 |
+
"eval_steps_per_second": 5.098,
|
2614 |
+
"epoch": 6.9608443034777,
|
2615 |
+
"step": 124000
|
2616 |
+
},
|
2617 |
+
{
|
2618 |
+
"loss": 0.0024,
|
2619 |
+
"grad_norm": 0.0003382643044460565,
|
2620 |
+
"learning_rate": 4.45933227659996e-05,
|
2621 |
+
"epoch": 6.988912903135263,
|
2622 |
+
"step": 124500
|
2623 |
+
},
|
2624 |
+
{
|
2625 |
+
"loss": 0.0024,
|
2626 |
+
"grad_norm": 0.0003371954953763634,
|
2627 |
+
"learning_rate": 4.3354963344561124e-05,
|
2628 |
+
"epoch": 7.0169534341931685,
|
2629 |
+
"step": 125000
|
2630 |
+
},
|
2631 |
+
{
|
2632 |
+
"loss": 0.0024,
|
2633 |
+
"grad_norm": 0.0003601745702326298,
|
2634 |
+
"learning_rate": 4.2116603923122646e-05,
|
2635 |
+
"epoch": 7.0450220338507314,
|
2636 |
+
"step": 125500
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"loss": 0.0024,
|
2640 |
+
"grad_norm": 0.00032043090322986245,
|
2641 |
+
"learning_rate": 4.087824450168417e-05,
|
2642 |
+
"epoch": 7.073090633508294,
|
2643 |
+
"step": 126000
|
2644 |
+
},
|
2645 |
+
{
|
2646 |
+
"eval_loss": 0.0011643405305221677,
|
2647 |
+
"eval_evaluator_0": 0.0013617631047964096,
|
2648 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7977362496603029,
|
2649 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8001515194571482,
|
2650 |
+
"eval_JSTS_pearson_cosine": 0.861298094227186,
|
2651 |
+
"eval_JSTS_spearman_cosine": 0.813236448790595,
|
2652 |
+
"eval_sequential_score": 0.5382499104508466,
|
2653 |
+
"eval_runtime": 73.0053,
|
2654 |
+
"eval_samples_per_second": 2523.804,
|
2655 |
+
"eval_steps_per_second": 4.931,
|
2656 |
+
"epoch": 7.073090633508294,
|
2657 |
+
"step": 126000
|
2658 |
+
},
|
2659 |
+
{
|
2660 |
+
"loss": 0.0024,
|
2661 |
+
"grad_norm": 0.00031437003053724766,
|
2662 |
+
"learning_rate": 3.963988508024569e-05,
|
2663 |
+
"epoch": 7.101159233165857,
|
2664 |
+
"step": 126500
|
2665 |
+
},
|
2666 |
+
{
|
2667 |
+
"loss": 0.0024,
|
2668 |
+
"grad_norm": 0.0003345895966049284,
|
2669 |
+
"learning_rate": 3.8401525658807213e-05,
|
2670 |
+
"epoch": 7.12922783282342,
|
2671 |
+
"step": 127000
|
2672 |
+
},
|
2673 |
+
{
|
2674 |
+
"loss": 0.0024,
|
2675 |
+
"grad_norm": 0.0003360872797202319,
|
2676 |
+
"learning_rate": 3.716316623736873e-05,
|
2677 |
+
"epoch": 7.157296432480983,
|
2678 |
+
"step": 127500
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"loss": 0.0024,
|
2682 |
+
"grad_norm": 0.00033311580773442984,
|
2683 |
+
"learning_rate": 3.592480681593025e-05,
|
2684 |
+
"epoch": 7.185365032138547,
|
2685 |
+
"step": 128000
|
2686 |
+
},
|
2687 |
+
{
|
2688 |
+
"eval_loss": 0.0011641262099146843,
|
2689 |
+
"eval_evaluator_0": 0.0013615088537335396,
|
2690 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7990914678424127,
|
2691 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8007984953885947,
|
2692 |
+
"eval_JSTS_pearson_cosine": 0.8617710720510966,
|
2693 |
+
"eval_JSTS_spearman_cosine": 0.8136913826185042,
|
2694 |
+
"eval_sequential_score": 0.5386171289536108,
|
2695 |
+
"eval_runtime": 71.8195,
|
2696 |
+
"eval_samples_per_second": 2565.473,
|
2697 |
+
"eval_steps_per_second": 5.013,
|
2698 |
+
"epoch": 7.185365032138547,
|
2699 |
+
"step": 128000
|
2700 |
+
},
|
2701 |
+
{
|
2702 |
+
"loss": 0.0024,
|
2703 |
+
"grad_norm": 0.00034391821827739477,
|
2704 |
+
"learning_rate": 3.4686447394491774e-05,
|
2705 |
+
"epoch": 7.21343363179611,
|
2706 |
+
"step": 128500
|
2707 |
+
},
|
2708 |
+
{
|
2709 |
+
"loss": 0.0024,
|
2710 |
+
"grad_norm": 0.0003487596404738724,
|
2711 |
+
"learning_rate": 3.3448087973053296e-05,
|
2712 |
+
"epoch": 7.241502231453673,
|
2713 |
+
"step": 129000
|
2714 |
+
},
|
2715 |
+
{
|
2716 |
+
"loss": 0.0024,
|
2717 |
+
"grad_norm": 0.00034094389411620796,
|
2718 |
+
"learning_rate": 3.220972855161482e-05,
|
2719 |
+
"epoch": 7.269570831111236,
|
2720 |
+
"step": 129500
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"loss": 0.0024,
|
2724 |
+
"grad_norm": 0.0003401459543965757,
|
2725 |
+
"learning_rate": 3.097136913017634e-05,
|
2726 |
+
"epoch": 7.297639430768799,
|
2727 |
+
"step": 130000
|
2728 |
+
},
|
2729 |
+
{
|
2730 |
+
"eval_loss": 0.001163804205134511,
|
2731 |
+
"eval_evaluator_0": 0.0013612366747111082,
|
2732 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7982797286012763,
|
2733 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8005149758262927,
|
2734 |
+
"eval_JSTS_pearson_cosine": 0.8617189467206064,
|
2735 |
+
"eval_JSTS_spearman_cosine": 0.8137947848860295,
|
2736 |
+
"eval_sequential_score": 0.5385569991290111,
|
2737 |
+
"eval_runtime": 71.0982,
|
2738 |
+
"eval_samples_per_second": 2591.5,
|
2739 |
+
"eval_steps_per_second": 5.063,
|
2740 |
+
"epoch": 7.297639430768799,
|
2741 |
+
"step": 130000
|
2742 |
+
},
|
2743 |
+
{
|
2744 |
+
"loss": 0.0024,
|
2745 |
+
"grad_norm": 0.0003691680612973869,
|
2746 |
+
"learning_rate": 2.9733009708737864e-05,
|
2747 |
+
"epoch": 7.325708030426362,
|
2748 |
+
"step": 130500
|
2749 |
+
},
|
2750 |
+
{
|
2751 |
+
"loss": 0.0024,
|
2752 |
+
"grad_norm": 0.00033191803959198296,
|
2753 |
+
"learning_rate": 2.8494650287299383e-05,
|
2754 |
+
"epoch": 7.353776630083925,
|
2755 |
+
"step": 131000
|
2756 |
+
},
|
2757 |
+
{
|
2758 |
+
"loss": 0.0024,
|
2759 |
+
"grad_norm": 0.0003305823483970016,
|
2760 |
+
"learning_rate": 2.7256290865860905e-05,
|
2761 |
+
"epoch": 7.381845229741488,
|
2762 |
+
"step": 131500
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"loss": 0.0024,
|
2766 |
+
"grad_norm": 0.00032995129004120827,
|
2767 |
+
"learning_rate": 2.6017931444422428e-05,
|
2768 |
+
"epoch": 7.409913829399051,
|
2769 |
+
"step": 132000
|
2770 |
+
},
|
2771 |
+
{
|
2772 |
+
"eval_loss": 0.0011634527472779155,
|
2773 |
+
"eval_evaluator_0": 0.0013608216540887952,
|
2774 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7974230206646705,
|
2775 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.7995378161678208,
|
2776 |
+
"eval_JSTS_pearson_cosine": 0.8617639739167566,
|
2777 |
+
"eval_JSTS_spearman_cosine": 0.8140133727128173,
|
2778 |
+
"eval_sequential_score": 0.5383040035115756,
|
2779 |
+
"eval_runtime": 74.9306,
|
2780 |
+
"eval_samples_per_second": 2458.956,
|
2781 |
+
"eval_steps_per_second": 4.804,
|
2782 |
+
"epoch": 7.409913829399051,
|
2783 |
+
"step": 132000
|
2784 |
+
},
|
2785 |
+
{
|
2786 |
+
"loss": 0.0024,
|
2787 |
+
"grad_norm": 0.00034205676638521254,
|
2788 |
+
"learning_rate": 2.4779572022983947e-05,
|
2789 |
+
"epoch": 7.437982429056614,
|
2790 |
+
"step": 132500
|
2791 |
+
},
|
2792 |
+
{
|
2793 |
+
"loss": 0.0024,
|
2794 |
+
"grad_norm": 0.00034039837191812694,
|
2795 |
+
"learning_rate": 2.354121260154547e-05,
|
2796 |
+
"epoch": 7.466051028714178,
|
2797 |
+
"step": 133000
|
2798 |
+
},
|
2799 |
+
{
|
2800 |
+
"loss": 0.0024,
|
2801 |
+
"grad_norm": 0.0003149213152937591,
|
2802 |
+
"learning_rate": 2.230285318010699e-05,
|
2803 |
+
"epoch": 7.494119628371741,
|
2804 |
+
"step": 133500
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"loss": 0.0024,
|
2808 |
+
"grad_norm": 0.0003163942019455135,
|
2809 |
+
"learning_rate": 2.1064493758668514e-05,
|
2810 |
+
"epoch": 7.522188228029304,
|
2811 |
+
"step": 134000
|
2812 |
+
},
|
2813 |
+
{
|
2814 |
+
"eval_loss": 0.0011632349342107773,
|
2815 |
+
"eval_evaluator_0": 0.0013606171123683453,
|
2816 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7971261315068038,
|
2817 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.799940281130607,
|
2818 |
+
"eval_JSTS_pearson_cosine": 0.8619249668633946,
|
2819 |
+
"eval_JSTS_spearman_cosine": 0.8141984859650053,
|
2820 |
+
"eval_sequential_score": 0.5384997947359936,
|
2821 |
+
"eval_runtime": 70.7072,
|
2822 |
+
"eval_samples_per_second": 2605.83,
|
2823 |
+
"eval_steps_per_second": 5.091,
|
2824 |
+
"epoch": 7.522188228029304,
|
2825 |
+
"step": 134000
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"loss": 0.0024,
|
2829 |
+
"grad_norm": 0.00029837930924259126,
|
2830 |
+
"learning_rate": 1.9826134337230033e-05,
|
2831 |
+
"epoch": 7.550256827686867,
|
2832 |
+
"step": 134500
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"loss": 0.0024,
|
2836 |
+
"grad_norm": 0.0003313660272397101,
|
2837 |
+
"learning_rate": 1.858777491579156e-05,
|
2838 |
+
"epoch": 7.57832542734443,
|
2839 |
+
"step": 135000
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"loss": 0.0024,
|
2843 |
+
"grad_norm": 0.0003373105137143284,
|
2844 |
+
"learning_rate": 1.734941549435308e-05,
|
2845 |
+
"epoch": 7.6063940270019925,
|
2846 |
+
"step": 135500
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"loss": 0.0024,
|
2850 |
+
"grad_norm": 0.0003585618978831917,
|
2851 |
+
"learning_rate": 1.61110560729146e-05,
|
2852 |
+
"epoch": 7.634462626659556,
|
2853 |
+
"step": 136000
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"eval_loss": 0.0011632071109488606,
|
2857 |
+
"eval_evaluator_0": 0.0013605711283162236,
|
2858 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7991714861040964,
|
2859 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8010703574998989,
|
2860 |
+
"eval_JSTS_pearson_cosine": 0.8617085515076026,
|
2861 |
+
"eval_JSTS_spearman_cosine": 0.8138006037415473,
|
2862 |
+
"eval_sequential_score": 0.5387438441232542,
|
2863 |
+
"eval_runtime": 74.264,
|
2864 |
+
"eval_samples_per_second": 2481.026,
|
2865 |
+
"eval_steps_per_second": 4.848,
|
2866 |
+
"epoch": 7.634462626659556,
|
2867 |
+
"step": 136000
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"loss": 0.0024,
|
2871 |
+
"grad_norm": 0.00030662360950373113,
|
2872 |
+
"learning_rate": 1.4872696651476123e-05,
|
2873 |
+
"epoch": 7.662531226317119,
|
2874 |
+
"step": 136500
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"loss": 0.0024,
|
2878 |
+
"grad_norm": 0.0003228651185054332,
|
2879 |
+
"learning_rate": 1.3634337230037645e-05,
|
2880 |
+
"epoch": 7.690599825974682,
|
2881 |
+
"step": 137000
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"loss": 0.0024,
|
2885 |
+
"grad_norm": 0.0003200937353540212,
|
2886 |
+
"learning_rate": 1.2395977808599166e-05,
|
2887 |
+
"epoch": 7.718668425632245,
|
2888 |
+
"step": 137500
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"loss": 0.0024,
|
2892 |
+
"grad_norm": 0.0002969225461129099,
|
2893 |
+
"learning_rate": 1.1157618387160687e-05,
|
2894 |
+
"epoch": 7.746737025289808,
|
2895 |
+
"step": 138000
|
2896 |
+
},
|
2897 |
+
{
|
2898 |
+
"eval_loss": 0.0011628158390522003,
|
2899 |
+
"eval_evaluator_0": 0.0013602408580482006,
|
2900 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7994965640380185,
|
2901 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8014635757612357,
|
2902 |
+
"eval_JSTS_pearson_cosine": 0.8621887195083964,
|
2903 |
+
"eval_JSTS_spearman_cosine": 0.8142017976984064,
|
2904 |
+
"eval_sequential_score": 0.5390085381058968,
|
2905 |
+
"eval_runtime": 70.4499,
|
2906 |
+
"eval_samples_per_second": 2615.349,
|
2907 |
+
"eval_steps_per_second": 5.11,
|
2908 |
+
"epoch": 7.746737025289808,
|
2909 |
+
"step": 138000
|
2910 |
+
},
|
2911 |
+
{
|
2912 |
+
"loss": 0.0024,
|
2913 |
+
"grad_norm": 0.0003055589913856238,
|
2914 |
+
"learning_rate": 9.919258965722211e-06,
|
2915 |
+
"epoch": 7.774805624947371,
|
2916 |
+
"step": 138500
|
2917 |
+
},
|
2918 |
+
{
|
2919 |
+
"loss": 0.0024,
|
2920 |
+
"grad_norm": 0.00030320361838676035,
|
2921 |
+
"learning_rate": 8.680899544283732e-06,
|
2922 |
+
"epoch": 7.802874224604935,
|
2923 |
+
"step": 139000
|
2924 |
+
},
|
2925 |
+
{
|
2926 |
+
"loss": 0.0024,
|
2927 |
+
"grad_norm": 0.0003302599652670324,
|
2928 |
+
"learning_rate": 7.442540122845254e-06,
|
2929 |
+
"epoch": 7.830942824262498,
|
2930 |
+
"step": 139500
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"loss": 0.0024,
|
2934 |
+
"grad_norm": 0.00031279708491638303,
|
2935 |
+
"learning_rate": 6.204180701406776e-06,
|
2936 |
+
"epoch": 7.859011423920061,
|
2937 |
+
"step": 140000
|
2938 |
+
},
|
2939 |
+
{
|
2940 |
+
"eval_loss": 0.0011627456406131387,
|
2941 |
+
"eval_evaluator_0": 0.001360146445222199,
|
2942 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7987378429030463,
|
2943 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8007339865504044,
|
2944 |
+
"eval_JSTS_pearson_cosine": 0.8619350551916014,
|
2945 |
+
"eval_JSTS_spearman_cosine": 0.8140707704434627,
|
2946 |
+
"eval_sequential_score": 0.5387216344796965,
|
2947 |
+
"eval_runtime": 74.7841,
|
2948 |
+
"eval_samples_per_second": 2463.772,
|
2949 |
+
"eval_steps_per_second": 4.814,
|
2950 |
+
"epoch": 7.859011423920061,
|
2951 |
+
"step": 140000
|
2952 |
+
},
|
2953 |
+
{
|
2954 |
+
"loss": 0.0024,
|
2955 |
+
"grad_norm": 0.0003151698037981987,
|
2956 |
+
"learning_rate": 4.965821279968297e-06,
|
2957 |
+
"epoch": 7.8870800235776235,
|
2958 |
+
"step": 140500
|
2959 |
+
},
|
2960 |
+
{
|
2961 |
+
"loss": 0.0024,
|
2962 |
+
"grad_norm": 0.0003283790429122746,
|
2963 |
+
"learning_rate": 3.7274618585298198e-06,
|
2964 |
+
"epoch": 7.915148623235186,
|
2965 |
+
"step": 141000
|
2966 |
+
},
|
2967 |
+
{
|
2968 |
+
"loss": 0.0024,
|
2969 |
+
"grad_norm": 0.00029954445199109614,
|
2970 |
+
"learning_rate": 2.4891024370913414e-06,
|
2971 |
+
"epoch": 7.94321722289275,
|
2972 |
+
"step": 141500
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"loss": 0.0024,
|
2976 |
+
"grad_norm": 0.0003039216680917889,
|
2977 |
+
"learning_rate": 1.250743015652863e-06,
|
2978 |
+
"epoch": 7.971285822550313,
|
2979 |
+
"step": 142000
|
2980 |
+
},
|
2981 |
+
{
|
2982 |
+
"eval_loss": 0.0011625363258644938,
|
2983 |
+
"eval_evaluator_0": 0.0013599260710179806,
|
2984 |
+
"eval_stsb_multi_mt-en_pearson_cosine": 0.7988037559289333,
|
2985 |
+
"eval_stsb_multi_mt-en_spearman_cosine": 0.8009711557760016,
|
2986 |
+
"eval_JSTS_pearson_cosine": 0.8622404113206219,
|
2987 |
+
"eval_JSTS_spearman_cosine": 0.8142666349859583,
|
2988 |
+
"eval_sequential_score": 0.5388659056109927,
|
2989 |
+
"eval_runtime": 72.1595,
|
2990 |
+
"eval_samples_per_second": 2553.385,
|
2991 |
+
"eval_steps_per_second": 4.989,
|
2992 |
+
"epoch": 7.971285822550313,
|
2993 |
+
"step": 142000
|
2994 |
+
},
|
2995 |
+
{
|
2996 |
+
"loss": 0.0024,
|
2997 |
+
"grad_norm": 0.00028941588243469596,
|
2998 |
+
"learning_rate": 1.2383594214384782e-08,
|
2999 |
+
"epoch": 7.999354422207876,
|
3000 |
+
"step": 142500
|
3001 |
+
}
|
3002 |
+
],
|
3003 |
+
"best_metric": null,
|
3004 |
+
"best_global_step": null,
|
3005 |
+
"best_model_checkpoint": null,
|
3006 |
+
"is_local_process_zero": true,
|
3007 |
+
"is_world_process_zero": true,
|
3008 |
+
"is_hyper_param_search": false,
|
3009 |
+
"trial_name": null,
|
3010 |
+
"trial_params": null,
|
3011 |
+
"stateful_callbacks": {
|
3012 |
+
"TrainerControl": {
|
3013 |
+
"args": {
|
3014 |
+
"should_training_stop": true,
|
3015 |
+
"should_epoch_stop": false,
|
3016 |
+
"should_save": true,
|
3017 |
+
"should_evaluate": false,
|
3018 |
+
"should_log": false
|
3019 |
+
},
|
3020 |
+
"attributes": {}
|
3021 |
+
}
|
3022 |
+
}
|
3023 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:023ece5731f0eed92e92135399cbe0b25b99b525ce8863c32c81f9a67e9ec300
|
3 |
+
size 5624
|